參考文獻 |
[1] 交通部統計查詢網,「機動車輛登記數」,2020年3月。
[2] 交通部統計調查網,「道路交通事故(30日內)-按第一當事者駕乘車種分」,2020年5月。
[3] 警政署統計處,「108 年警察機關受(處)理 A1 及 A2 類道路交通事故概況」,2020年5月20日。
[4] 施聰評; 林信賢, "先進駕駛輔助系統(ADAS) 法規趨勢 - 財團法人車輛研究測試中心," [Online]. Available:https://www.artc.org.tw/upfiles/ADUpload/knowledge/tw_knowledge_499017376.pdf.
[5] N Bodla, B Singh and R Chellappaet al, "Soft-NMS: improving object detection with one line of code," in Proc. IEEE Int. Conf. on Computer Vision (ICCV), Venice, Italy, Oct. 22-29, 2017.
[6] S. Albelwi and A. Mahmood, "A framework for designing the architectures of deep convolutional neural networks, " Entropy, vol.19, no.6, p.5, 2017.
[7] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, "Gradient-based learning applied to document recognition," Proceedings of the IEEE, vol.86, pp.2278-2324, 1998.
[8] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies for accurate object detection and semantic segmentation,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Columbus, Ohio, Jun.23-28, 2014, pp.580-587.
[9] J. Uijlings, K. Sande, T. Gevers, and A. Smeulders, “Selective search for object recognition,”Int. Journal of Computer Vision (IJCV), vol.104, is.2, pp.154-171, 2013.
[10] R. Girshick, "Fast R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Santiago, Chile, Dec.11-18, 2015, pp.1440-1448.
[11] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in deep convolutional networks for visual recognition,” in Proc. of ECCV Conf. , Zurich, Switzerland, Sep.6-12, 2014, pp.346-361.
[12] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time object detection with region proposal networks,” IEEE Trans. on Pattern Analysis and Machine Intelligence, vol.39, is.6, pp.1137-1149, 2016.
[13] K. He, G. Gkioxari, P. Dollár, and R. Girshick, "Mask R-CNN," in Proc. of IEEE Int. Conf. on Computer Vision (ICCV), Venice, Italy, Oct.22-29, 2017, pp. 2980-2988.
[14] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD: Single shot multibox detector,” in European Conf. on Computer Vision (ECCV), Amsterdam, Holland, Oct.8-16, 2016, pp.21-37.
[15] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep convolutional neural networks,” in Proc. Neural Information Processing Systems (NIPS), Lake Tahoe, Nevada, Dec.3-8, 2012, pp.1097-1105.
[16] M. Lin, Q. Chen, and S. Yan, “Netwok in network,” in Proc. Int. Conf. Learn. Represent (ICLR), Banff, Canada, Apr.14-16, 2014, pp.274-278.
[17] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,” in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, MA, Jun.7-12, 2015, pp.1-9.
[18] N. Iandola, S. Han, W. Moskewicz, K. Ashraf, W. Dally and K. Keutzer, ′′Squeezenet: Alexnet-level accuracy with 50x fewer parameters and 1mb model size,′′ arXiv: 1602.07360.
[19] A. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang, T. Weyand, M. Andreetto, and H. Adam, ′′ Mobilenets: efficient convolutional neural networks for mobile vision applications,′′ arXiv:1704.04861.
[20] F. Chollet, ′′Xception: deep learning with depthwise deparable convolutions,′′ in Proc. IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, Jul.22-25, 2017, pp.1800-1807.
[21] X. Zhang, X. Zhou, M. Lin, and J. Sun, ′′ShuffleNet: an extremely efficient convolutional neural network for mobile devices,′′ arXiv:1707.01083.
[22] G. Huang, Z. Liu, L. V. D. Maaten and K. Q. Weinberger, ′′Densely Connected Convolutional Networks,′′ in Proc. IEEE Conf. on Pattern Recognition and Computer Vision (CVPR), Honolulu, Hawaii, Jul.22-25, 2017, pp.4700-4708.
[23] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, "You only look once: unified, real-time object detection," in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp.779-788.
[24] J. Redmon and A. Farhadi, “YOLO9000: better, faster, stronger,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii, Jul.21-26, 2017, pp.6517-6525.
[25] J. MacQueen, “Some methods for classification and analysis of multivariate observations,” in Proc. 5th Berkeley Symp. on Mathematical Statistics and Probability, Berkeley, CA, Jun.21-Jul.18, vol.1, 1967, pp.281-297.
[26] J. Redmon and A. Farhadi, “YOLO v3: an incremental improvement, ” arXiv:1804.02767.
[27] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, ′′ Feature pyramid networks for object detection,′′ arXiv:1612.03144, 2017.
[28] K. He, X. Zhang, S. Ren, and J. Sun, ′′Deep residual learning for image Recognition,′′ arXiv: 1512.03385.
[29] 維基百科,”樹莓派” Raspberry。
[30] Raspberry Pi 官方代理商,Raspberry Pi 台灣樹莓派。
[31] OpenVINOTM Toolkit,「Optimization Guide」。 |