博碩士論文 975403004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:136 、訪客IP:18.119.111.9
姓名 張漢魁(Han-Kui Chang)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱
(Channel Quantization, Power Control and Link Scheduling Strategies for Relaying and Energy Harvesting Communications)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著高資料量傳輸服務與多樣性應用的快速發展,高傳輸速率、低延遲、更佳的能量效率及更穩定的鏈結能力為下一代的無線通訊系統所具備的。合作式通訊網路與能量獵取技術在其中扮演了重要角色。首先,在第一部分的研究中,於中繼系統研究量化處理的傳送端到中繼端通道資訊對於符元錯誤率影響的效能分析。合作式通訊網路因中繼系統的協助獲取空間多樣性資源;然而,為了獲取完整的空間多樣性資源,接收端必需獲取完整的通道狀態資訊,包含:傳送端到接收端、傳送端到中繼端及中繼端到接收端的通道資訊。因傳送端到中繼端的通道資訊無法於接收端直接獲得,在考慮分解通道估計於中繼系統,為了減少傳送端到中繼端通道資訊向後傳給接收端所衍生的頻寬與複雜度問題,我們研究通道資訊的量化處理對於系統效能的影響與可應用的量化方法。研究內容主要建立放大中繼系統於量化通道訊息下的接收訊雜比訊號模型,分析與推導此訊雜比訊號模型的機率密度分布函數上限與下限,進而得到符元錯誤率的理論分析結果,並以實驗模擬驗證有效性。此外,我們提出等機率分割結合最小均方誤差準則的非遞迴量化方法以減少量化誤差對於系統效能的影響;更進一步,將其結果結合Lloyd-Max方法以遞迴方式所得到的結果,只要3個位元數的訊息量以表示傳送端到中繼端的通道資訊,系統訊雜比仍可維持在優異的效能。在第二部分的研究中,於太陽能供電的雙向通訊系統中分析採集能量及通道衰落的變化對於系統效能的影響。於供電的雙向通訊系統中我們考慮分時傳輸的架構,因能量獵取所導致能量供給模型的不定性,分時傳輸架構的資源分配需要重新被設計。基於馬可夫決策過程的設計方法,我們提出統計型的資源分配方法以降低系統的平均中斷機率。此提出的方法可依據雙向通訊系統中兩個節點之間太陽能採集的狀態、通道變化的狀態及電池儲存狀態,適當地能源分配與鏈結選擇已達到最佳的系統效能。此外,我們分析電池儲存狀態與馬可夫決策結果之間的關係。經電腦模擬結果可證實馬可夫決策過程的設計方法可讓分時的雙向通訊系統達到最小的平均中斷機率。
摘要(英) As demands for increased data rate services and diverse applications grow tremendously, higher data rates, reduced latencies, better energy efficiency, and reliable connectivity are required in wireless communications in the future. Cooperative communication and energy harvesting techniques play the key role to achieve these requirements.
In the first part, cooperative communication assisted by relays is regarded as an effective means of achieving spatial diversity. The achievable diversity gain relies on the channel state information (CSI) that can be acquired at the destination because spatial diversity combining unavoidably requires the disintegrated channel information. To reduce signaling overhead, quantization and compression are applied prior to the delivery of the source-to-relay (SR) CSI to the destination. In this dissertation, an amplify-and-forward (AF) relay network while considering the impact of the quantization of the SR CSI is studied. Several quantization methods relying on the statistics of the SR CSI are investigated. The probability density functions (PDFs) of the upper and lower bounds of the signal-to-noise ratio (SNR) and the corresponding symbol-error rate (SER) achieved at the destination are derived analytically. Monte Carlo simulations are performed to compare the simulation results with the analytical results of the SER bounds and to verify the effectiveness of the proposed channel quantizer. A combined method of determining the quantization interval based on equal-probability partitioning (EPP) and determining the representative quanta based on the minimum-mean-square-error (MMSE) criterion is proposed and is verified to have lowest quantization error among the non-iterative quantization methods compared here. It is shown via the simulations that when using an iterative procedure based on the Lloyd-Max process, $3$ bits per dimension are sufficient to achieve negligible SNR degradation.

In the Second part, a solar-powered bidirectional communication system is studied for a pair of energy harvesting (EH) nodes that intend to communicate with each other over wireless fading channels. The conventional time-division duplex (TDD) transmission is revisited by proposing a stochastic resource scheduling scheme to minimize an average rate outage probability based on a Markov decision process (MDP) design framework. Different from the conventional TDD transmission, the proposed scheme can adjust the link direction and energy expenditure for data transmissions between the two EH nodes, in response to the dynamics of the solar EH, channel fading and battery storage conditions. A downstairs threshold structure is theoretically proved under a special optimal on-off policy, in which two-dimensional thresholds pinpoint the interplay between the transmission actions and the available energy in the batteries of the two nodes. Also the optimal on-off policy at asymptotically high signal-to-noise ratios (SNRs) is revealed. The outage performance of the proposed stochastic resource scheduling scheme is validated by extensive computer simulations, and it shows that the proposed optimal MDP policy can achieve significant performance gains over the combinations of other compared schemes, including round-robin and battery state-oriented link scheduling schemes, and greedy and conservative energy scheduling schemes.
關鍵字(中) ★ 中繼系統
★ 通道估測
★ 量化
★ 能量採集
★ 太陽能
★ 資源分配
關鍵字(英)
論文目次 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii
List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix
1 Introduction 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Overview and Issue: Cooperative Communication . . . . . . . . . . . . . . 3
1.2.1 Multiple Input Multiple Output Systems . . . . . . . . . . . . . . . 3
1.2.2 Two-Hop Relay Networks . . . . . . . . . . . . . . . . . . . . . . . 4
1.2.3 Relaying Protocols . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.2.4 Channel Estimation Methods for AF relaying . . . . . . . . . . . . 5
1.3 Overview and Issue: Energy Harvesting . . . . . . . . . . . . . . . . . . . . 7
1.3.1 Energy Sources of EH . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3.2 Energy Models of Solar Source . . . . . . . . . . . . . . . . . . . . . 11
1.3.3 Data-Driven Solar Stochastic Model [48] . . . . . . . . . . . . . . . 12
1.3.4 EH Bidirectional Time Division Duplex . . . . . . . . . . . . . . . . 13
1.4 Organization of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . 15
2 Impact of Imperfect Source-to-Relay CSI in Amplify-and-Forward Relay
Networks 16
2.1 Related Works and Organization of This Work . . . . . . . . . . . . . . . . 16
2.2 Preliminary: Signal Model and Channel Quantization . . . . . . . . . . . . 18
2.2.1 Signal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2.2 Channel Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3 Signal-to-Noise Ratio and Symbol Error Rate Derivations . . . . . . . . . . 21
2.3.1 CSI-Assisted Relay Gain Determination . . . . . . . . . . . . . . . 22
2.3.2 Semi-blind Relay Gain Determination . . . . . . . . . . . . . . . . . 25
2.4 Quantization Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.1 Possible Choices for I . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.4.2 Possible Choices for M . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.5 Simulations and Numerical Results . . . . . . . . . . . . . . . . . . . . . . 33
2.5.1 Low-CQE Regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.5.2 Non-iterative Quantization . . . . . . . . . . . . . . . . . . . . . . . 34
2.5.3 Iterative Quantization . . . . . . . . . . . . . . . . . . . . . . . . . 37
2.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
2.7 Appendix 2.A: Derivation of (2.30) . . . . . . . . . . . . . . . . . . . . . . 45
3 On Stochastic Link and Energy Scheduling for Energy Harvesting Bidi-
rectional Communications 47
3.1 Related Works and Organization of This Work . . . . . . . . . . . . . . . . 47
3.2 Solar-Powered Bidirectional Communications . . . . . . . . . . . . . . . . . 51
3.3 Markov Decision Process with Stochastic Models . . . . . . . . . . . . . . . 53
3.3.1 MDP System Sates . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Link and Energy Scheduling Actions . . . . . . . . . . . . . . . . . 54
3.3.3 MDP State Transition . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.3.4 Cost Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3.5 Optimization of Resource Scheduling Policy . . . . . . . . . . . . . 59
3.4 Analysis Of Optimal On-O Link and Energy Scheduling Policy . . . . . . 60
3.4.1 Monotonic and Bounded Expected Total Discounted Rewards for
Optimal On-O Policy . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.4.2 Downstairs Threshold Structural Properties of Optimal On-O Policy 63
3.4.3 Optimal On-O Policy at Asymptotically High SNRs . . . . . . . . 66
3.4.4 Performance Analysis of Overall Outage Probability . . . . . . . . . 68
3.5 Numerical Results and Discussions . . . . . . . . . . . . . . . . . . . . . . 69
3.5.1 Heuristic Link and Energy Scheduling Policies . . . . . . . . . . . . 69
3.5.2 Simulation Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
3.5.3 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
3.5.4 Implementation Complexity and Overhead . . . . . . . . . . . . . . 78
3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
3.7 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
3.7.1 Appendix 3.A: Proof of Lemma 3.4.1 . . . . . . . . . . . . . . . . . 82
3.7.2 Appendix 3.B: Proof of Corollary 1 . . . . . . . . . . . . . . . . . . 84
3.7.3 Appendix 3.C: Proof of Lemma 3.4.2 . . . . . . . . . . . . . . . . . 86
3.7.4 Appendix 3.D: Proof of Theorem 3.4.2 . . . . . . . . . . . . . . . . 88
3.7.5 Appendix 3.E: Proof of Theorem 3.4.3 . . . . . . . . . . . . . . . . 90
3.7.6 Appendix 3.F: Proof of Theorem 3.4.4 . . . . . . . . . . . . . . . . 90
3.7.7 Appendix 3.G: Proof of Theorem 3.4.5 . . . . . . . . . . . . . . . . 91
4 Conclusions 92
Bibliography 94
5 Accepted/Submitted Papers 106
參考文獻 [1] J. Kim, J. Hwang, K. J. Lee, and I. Lee, Blockwise amplify-and-forward relaying strategies for multipoint-to multipoint MIMO networks," IEEE Trans. Wireless Commun., vol. 10, pp. 2028-2033, Jul. 2011.
[2] F. Khan, Y. Chen, and M. Alouini, Novel receivers for AF relaying with distributed STBC using cascaded and disintegrated channel estimation," IEEE Trans. Wireless Commun., vol. 11, no. 4, pp. 1370-1379, Apr. 2012.
[3] T. Q. Duong, G. C. Alexandropoulos, H. Zepernick, and T. A. Tsiftsis, Orthogonal space-time block codes with CSI-assisted amplify-and-forward relaying in correlated Nakagami-m fading channels," IEEE Trans. Veh. Technol., vol. 60, no. 3, pp. 882-889, Mar. 2011.
[4] Z. Li, X. G. Xia, and M. H. Lee, A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels," IEEE Trans. Commun., vol. 58, no. 8, pp. 2219-2224, Aug. 2010.
[5] X. Li, C. Xing, Y.-C. Wu, and S. C. Chan, Timing estimation and resynchronization for amplify-and-forward communication systems," IEEE Trans. Signal Process., vol. 58, no. 4, pp. 2218-2229, Apr. 2010.
[6] Q. Huang, M. Ghogho, J. Wei, and P. Ciblat, Practical timing and frequency synchronization for OFDM-based cooperative systems," IEEE Trans. Signal Process., vol. 58, no. 7, pp. 3706-3716, Jul. 2010.
[7] Y. Yao and X. Dong, Multiple CFO mitigation in amplify-and-forward cooperative OFDM transmission," IEEE Trans. Commun., vol. 60, no. 12, pp. 3844-3854, Dec. 2012.
[8] A. A. Nasir, H. Mehrpouyan, S. Durrani, S. D. Blostein, R. A. Kennedy, and B. Ottersten, Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency o sets," IEEE Trans. Signal Process., vol. 61, no. 12, pp. 3143-3158, Jun. 2013.
[9] S. Alamouti, A simple transmit diversity technique for wireless communications," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1451-1458, Oct. 1998.
[10] K.-P. Chou and J.-C. Lin, Disintegrated channel estimation in scalable lter-andforward relay network with IRI coordination," in Proc. IEEE Wireless Telecommunications Symposium (WTS 2015), New York City, USA, Apr. 15-17, 2015, pp. 1-6.
[11] K.-P. Chou, J.-C. Lin, and H. V. Poor, Disintegrated channel estimation in lterand-forward relay networks," IEEE Trans. Commun., vol. 64, no. 7, pp. 2835-2847, Jul. 2016.
[12] M. Malkawi and I. M. Kim, Hard/soft detection with limited CSI for multi-hop systems," IEEE Trans. Wireless Commun., vol. 8, no. 7, pp. 3435-3441, Jul. 2009.
[13] P. Liu and I. M. Kim, Optimum/sub-optimum detectors for multi-branch dual-hop amplify-and-forward cooperative diversity networks with limited CSI," IEEE Trans. Wireless Commun., vol. 9, no. 1, pp. 78-85, Jan. 2010.
[14] Z. Peng, L.-C. Wang, W. Xu, and C. Zhao, Achievable rate analysis and feedback design for multiuser MIMO relay with imperfect CSI," IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 780-793, Feb. 2014.
[15] S. Han, S. Ahn, E. Oh, and E. Hong, E ect of channel-estimation error on BER performance in cooperative transmission," IEEE Trans. Veh. Technol., vol. 58, no. 4, pp. 2083-2088, May 2009.
[16] O. Amin, S. S. Ikki, and M. Uysal, On the performance analysis of multirelay cooperative diversity systems with channel estimation errors," IEEE Trans. Veh. Technol., vol. 60, no. 5, pp. 2050-2059, Jun. 2011.
[17] J.-C. Lin and H. V. Poor, Revisit on maximum ratio combining reception practically attained across correlated Nakagami-m branches," in Proc. IEEE Wireless Telecommunications Symposium (WTS 2015), New York City, USA, April 15-17, 2015.
[18] J.-C. Lin and H. V. Poor, A systematic approach to deriving the covariance matrix of correlated Nakagami-m fading channels," IEEE Trans. Veh. Technol., vol. 69, no. 2, pp. 1612-1625, Feb. 2020.
[19] J.-C. Lin and H. V. Poor, Optimum combiner for spatially correlated Nakagami-m fading channels," IEEE Trans. Wireless Commun., under review.
[20] S. Haykin, Communication Systems, 4th ed. Hoboken, NJ, USA: Wiley, 2001.
[21] S. P. Lloyd, Least squares quantization in PCM," IEEE Trans. Inf. Theory, vol. IT-28, no. 2, pp. 129-137, Mar. 1982.
[22] M. Skonglund and G. Jongren, On the capacity of a multiple-antenna communication link with channel side information," IEEE J. Sel. Areas Commun., vol. 21, no. 3, pp. 395-405, Apr. 2003.
[23] V. Lau, Y. Liu, and T.-A. Chen, On the design of MIMO block-fading channels with feedback-link capacity constraint," IEEE Trans. Commun., vol. 52, no. 1, pp. 62-70, Jan. 2004.
[24] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. A. Aazhang, On beamforming with finite rate feedback in multiple antenna systems," IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735-2747, Oct. 2003.
[25] D. Rajan, A. Sabharwal, and B. A. Aazhang, Outage behavior with delay and CSIT," in Proc. IEEE Int. Conf. Commun., Jun. 2004, pp. 578-582.
[26] A. Hjrungnes and D. Gesbert, Precoding of orthogonal space-time block codes in arbitrarily correlated MIMO channels: Iterative and closed-form solutions," IEEE Trans. Wireless Commun., vol. 6, no. 3, pp. 1072-1082, Mar. 2007.
[27] S. Zhou and B. Li, BER criterion and codebook construction for nite-rate precoded spatial multiplexing with linear receivers," IEEE Trans. Signal Process., vol. 54, no. 5, pp. 1653-1665, May 2006.
[28] D. J. Love, R. W. Heath, and T. Strohmer, Grassmannian beamforming for multipleinput multiple- output wireless systems," IEEE Trans. Inf. Theory, vol. 49, no. 10, pp. 2735-2747, Oct. 2003.
[29] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, Ecient use of side information in multiple-antenna data transmission over fading channels," IEEE J. Sel. Areas Commun., vol. 16, no. 8, pp. 1423-1436, Oct. 1998.
[30] O. Amin, B. Gedik, and M. Uysal, Channel estimation for amplify-and-forward relaying: Cascaded against disintegrated estimators," IET Commun., vol. 4, pp. 1207-1216, Jul. 2010.
[31] Z. Fang, X. Zho, X. Bao and Z.Wang, Outage minimized relay selection with partial channel information," in Proc. IEEE Int. Conf. Acoust, Speech, Signal Process., Apr. 2009, pp. 2617-2620.
[32] M. M. Abdallah and H. C. Papadopoulos, Beamforming algorithms for information relaying in wireless sensor networks," IEEE Trans. Signal Process., vol. 56, pp. 4772-4784, Oct. 2008.
[33] E. Karamad, B. Khoshnevis, and R. S. Adve, Quantization and bit allocation for channel state feedback in relay-assisted wireless networks," IEEE Trans. Signal Process., vol. 61, no. 2, pp. 327-339, Jan. 2013.
[34] T. M. Cover and J. A. Thomas, Elements of Information Theory. Hoboken, NJ, USA: Wiley, 1991.
[35] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise, 6th ed. Hoboken, NJ, USA: Wiley, 2010.
[36] J. N. Laneman and G. W. Wornell, Energy ecient antenna sharing and relay for wireless networks," in Proc. IEEE Wireless Commun. Netw. Conf., Sep. 23{28, 2000, pp. 7-12.
[37] M. O. Hasna and M. S. Alouini, A performance study of dual-hop transmissions with xed gain relays," IEEE Trans. Wireless Commun., vol. 3, no. 6, pp. 1963-1968, Nov. 2004.
[38] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. New York, NY, USA:Dover, 1970.
[39] P. A. Anghel and M. Kaveh, Exact symbol error probability of a cooperative network in a Rayleigh- fading environment," IEEE Trans. Wireless Commun., vol. 3, no. 5, pp. 1416-1421, Sep. 2004.
[40] LTE; Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 version 10.3.0 Release 10), 3GPP Std. v10.3.0, 2011.
[41] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels. Hoboken, NJ, USA: Wiley, 2000.
[42] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Prducts. New York, NY, USA: Academic, 2007.
[43] B. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems, 4th ed. London, U.K.: Oxford Univ. Press, 2010.
[44] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: Wiley, 1974.
[45] A. El Gamal and Y.-H. Kim, Network Information Theory. Cambridge, U.K.: Cambridge Univ. Press, 2011.
[46] M.-L. Ku, W. Li, Y. Chen, and K. J. R. Liu, Advances in energy harvesting communications: past,present, and future challenges," IEEE Commun. Surveys Tuts., vol. 18, no. 2, pp. 1384-1412, 2016.
[47] M. Puterman, Markov Decision Process-Discrete Stochastic Dynamic Programming.
John Wiley and Sons, 1994.
[48] M.-L. Ku, Y. Chen, and K. J. R. Liu, Data-driven stochastic transmission policies for energy harvesting sensor communications," IEEE J. Sel. Areas Commun., vol. 33, no. 8, pp. 1505-1520, Aug. 2015.
[49] H. S. Wang, N. Moayeri, Finite-state Markov channel-a useful model for radio communication channels," IEEE Trans. Wireless Commun., vol.44, no.1, pp. 163-171, Feb. 1995.
[50] O. Ozel, K.Tutuncuoglu, J. Yang, S. Ulukus, and A. Yener, Transmission with energy harvesting nodes in fading wireless channels optimal policies," IEEE J. Sel. Areas Commun., vol. 29, no. 8, pp. 1732-1743, Sep. 2011.
[51] Y. K. Tan and S. K. Panda, Energy harvesting from hybrid indoor ambient light and thermal energy sources for enhanced performance of wireless sensor nodes," IEEE Trans. Ind. Electron., vol. 58, no. 9, pp. 4424{4435, Sep. 2011.
[52] W. S. Wang, T. O′Donnell, N. Wang, M. Hayes, B. O′Flynn, and C. O′Mathuna, Design considerations of sub-mW indoor light energy harvesting for wireless sensor systems," ACM J. Emerg. Technol. Comput. Syst., vol. 6, no. 2, pp. 118, Jun. 2010.
[53] M.-L. Ku, W. Li, Y. Chen, and K. J. R. Liu, On energy harvesting gain and diversity analysis in cooperative communications," IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2641-2657, Dec. 2015.
[54] W. Li, M.-L. Ku, Y. Chen, and K. J. R. Liu, On outage probability for two-way relay networks with stochastic energy harvesting," IEEE Trans. Commun., vol. 64, no. 5, pp. 1901-1915, May 2016.
[55] A. Sultan, Sensing and transmit energy optimization for an energy harvesting cognitive radio," IEEE Wireless Commun. Lett., vol. 1, no. 5, pp. 500-503, Oct. 2012.
[56] S. Park, and D. Hong Achievable throughput of energy harvesting cognitive radio networks," IEEE Trans. Wireless Commun., vol. 13, no. 2, pp. 1010-1022, Feb. 2014.
[57] J. Yang, O. Ozel, and S. Ulukus, Broadcasting with an energy harvesting rechargeable transmitter," IEEE Trans. Wireless Commun., vol. 11, no. 2, pp. 571-583, Feb. 2012.
[58] O. Ozel, J. Yang, and U. Sennur, Optimal broadcast scheduling for an energy harvesting rechargeable transmitter with a nite capacity battery," IEEE Trans. Wireless Commun., vol. 11, no. 6, pp. 2193-2203, Jun. 2012.
[59] Y. Mao, Y. Luo, J. Zhang, and K. B. Letaief, Energy harvesting small cell networks: feasibility, deployment, and operation," IEEE Commun. Mag., vol. 53, no. 6, pp. 94-101, Jun. 2015.
[60] M. A. Kishk and H. S. Dhillon, Joint uplink and downlink coverage analysis of cellular-based RF-powered IoT network," IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 446-459, Jun. 2018.
[61] Y. Wu, X. Yang, L. P. Qian, H. Zhou, X. Shen, and M. K. Awad, Optimal dual connectivity trac ooading in energy-harvesting small-cell networks," IEEE Trans. Green Commun. Netw., vol. 2, no. 4, pp. 1041-1058, Dec. 2018.
[62] F. A. Aoudia, M. Gautier, and O. Berder, RLMan: An energy manager based on reinforcement learning for energy harvesting wireless sensor networks," IEEE Trans. Green Commun. Netw., vol. 2, no. 2, pp. 408-417, Jun. 2018.
[63] C. Qiu, Y. Hu, Y. Chen, and B. Zeng, Deep deterministic policy gradient (DDPG)-based energy harvesting wireless communications," IEEE Internet Things J., vol. 6, no. 5, pp. 8577-8588, Oct. 2019.
[64] H. Mahdavi-Doost and R. D. Yates, Energy harvesting receivers: Finite battery capacity," in Proc. IEEE Int. Symp. Inf. Theory, Jul. 2013.
[65] R. D. Yates and H. Mahdavi-Doost, Energy harvesting receivers: packet sampling and decoding policies," IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 558-570, Mar. 2015.
[66] H. Mahdavi-Doost and R. D. Yates, Fading channels in energy harvesting receivers," in Proc. Conf. Inf. Sci. Syst., Mar. 2014.
[67] Z. W. Ni and M. Motani, Online policies for energy harvesting receivers with timeswitching architectures," IEEE Trans. Wireless Commun., vol. 18, no. 2, pp. 1233-1246, Feb. 2019.
[68] A. Arafa, A. Baknina, and S. Ulukus, Energy harvesting two-way channel with decoding costs," in Proc. IEEE ICC, May 2016.
[69] K. Tutuncuoglu and A. Yener, Communicating with energy harvesting transmitters and receivers," in Proc. UCSD Inf. Theory Appl. Workshop, Feb. 2012.
[70] S. Zhou, T. Chen, W. Chen, and Z. Niu, Outage minimization for a fading wireless link with energy harvesting transmitter and receiver," IEEE J. Sel. Areas Commun., vol. 33, no. 3, pp. 496-511, Mar. 2015.
[71] A. Arafa and S. Ulukus, Optimal policies for wireless networks energy harvesting transmitters and receivers: E ects of decoding costs," IEEE J. Sel. Areas Commun., vol. 33, no. 12, pp. 2611-2625, Dec. 2015.
[72] M. K. Sharma and C. R. Murthy, Packet drop probability analysis of dual energy harvesting links with retransmission," IEEE J. Sel. Areas Commun., vol. 34, no. 12, pp. 3646-3660, Dec. 2016.
[73] M. K. Sharma and C. R. Murthy, On the design of dual energy harvesting communication links with retransmission," IEEE Trans. Wireless Commun., vol. 16, no. 6, pp. 4079-4093, Jun. 2017.
[74] M. Abedi and M. J. Emadi, Cooperative power management in energy harvesting communication systems in presence of a helper," IEEE Trans. Green Commun. Netw., vol. 3, no. 1, pp. 147-158, Mar. 2019.
[75] A. Arafa, A. Baknina, and S. Ulukus, Energy harvesting two-way channels with decoding and processing costs," IEEE Trans. Green Commun. Netw., vol. 1, no. 1, pp. 3-16, Mar. 2017.
[76] N. R. E. Laboratory. (2012). Solar Radiation Resource Information [Online] Available:
http://www.nrel.gov/rredc
[77] N. Michelusi, L. Badia, and M. Zorzi, Optimal transmission policies for energy harvesting devices with limited state-of-charge knowledge," IEEE Trans. Commun., vol. 62, no. 11, pp. 3969-3982, Nov., 2014.
[78] W. Li, M.-L. Ku, Y. Chen, and K. J. R. Liu, On outage probability for stochastic energy harvesting communications in fading channels," IEEE Trans. Signal Process. Lett., vol. 22, no. 11, pp. 1893-1897, Nov. 2015.
[79] W. Li, M.-L. Ku, Y. Chen, Y. Wang, and Z. Liang, Transmission policy of two-way relay networks with multiple stochastic energy harvesting nodes," IEEE Access, vol. 7, no. 1, pp. 76967-76984, Dec. 2019.
[80] S. Sudevalayam and P. Kulkani, Energy harvesting sensor nodes: survey and implications," IEEE Commun. Surveys Tuts., vol.13, no.3, pp. 443-461, 2011.
[81] W. C. Jakes, Microwave Mobile Communications. New York, NY, USA: Wiley, 1974.
[82] A. J. Paulraj, D. A. Gore, R. U. Nadar, and H. Bolcskei, An overview of MIMO communications - a key to gigabit wireless," Proc. IEEE, vol. 92, no. 2, pp. 198-218, Feb. 2004.
[83] A. Goldsmith, S. A. Jafar, N. Jindal, and S. Vishwanath, Capacity limits of MIMO channels," IEEE J. Sel. Areas Commun., vol. 21, no. 5, pp. 684-702, Jun. 2003.
[84] A. Sendonaris, E. Erkip, and B. Aazhang, User cooperation diversity, part I: system description," IEEE Trans. Commun., vol. 51, no. 11, pp. 1927-1938, Nov. 2003.
[85] |||, User cooperation diversity, part II: implementation aspects and performance analysis," IEEE Trans. Commun., vol. 51, no. 11, pp. 1939-1948, Nov. 2003.
[86] G. J. Foschini and M. Gans, On limits of wireless communications in a fading environment when using multiple antennas," Wireless Personal Commun., vol. 6, no. 3, pp. 311-335, Mar. 1998.
[87] J. N. Laneman, D. N. C. Tse, and G. W. Wornell, Cooperative diversity in wireless networks: ecient protocols and outage behavior," IEEE Trans. Inf. Theory, vol. 50, no. 12, pp. 3062-3080, Dec. 2004.
[88] G. Kramer, M. Gastpar, and P. Gupta, Cooperative strategies and capacity theorems for relay networks," IEEE Trans. Inf. Theory, vol. 51, no. 9, pp. 3037-3063, Sep. 2005.
[89] M. Janani, A. Hedayat, T. E. Hunter, and A. Nosratinia, Coded cooperation in wireless communications: space-time transmission and iterative decoding," IEEE Trans. Signal Process., vol. 52, no. 2, pp. 362-371, Jan. 2004.
[90] C. Han, T. Harrold, S. Armour, I. Krikidis, S. Videv, P. Grant, H. Haas, J. Thompson, I. Ku, C.-X. Wang, T.A. Le, M. Nakhai, J. Zhang, and L. Hanzo, Green radio: radio techniques to enable energy-ecient networks," IEEE Commun. Mag., vol. 49, no. 6, pp. 46-54, Jun. 2011.
[91] G. Y. Li, Z. Xu, C. Xiong, C. Yang, S. Chang, Y. Chen, and S. Xu, Energy-ecient wireless communications: tutorial, survey, and open issues," IEEE Wireless Commun. Mag., vol. 18, no. 6, pp. 28-35, Dec. 2011.
[92] J. A. Paradiso and T. Starner, Energy scavenging for mobile and wireless electronics," IEEE Pervasive Comput., vol. 4, no. 1, pp. 18-27, 2005.
[93] R. K. Sathiendran, R. R. Sekaran, B. Chandar, and B. S. A. G. Prasad, Wind energy harvesting system powered wireless sensor networks for structural health monitoring," in Proc. IEEE Int. Conf. Circuit Power Compt. Technol., , 2014, pp. 523-526.
[94] P. D. Mitcheson, E. M. Yeatman, G. K. Rao, A. S. Holmes, and T. C. Green, Energy harvesting from human and machine motion for wireless electronic devices," Proc. IEEE, vol. 96, no. 9, pp. 1457-1486, Sep. 2008.
[95] S. Kim, et al., Ambient RF energy-harvesting technologies for selfsustainable standalone wireless sensor platforms," Proc. IEEE, vol. 102, no. 11, pp. 1649-1666, Nov. 2014.
[96] I. Krikidis, S. Timotheou, S. Nikolaou, Z. Gan, D. W. K. Ng, and R. Schober, Simultaneous wireless information and power transfer in modern communication systems," IEEE Commun. Mag., vol. 52, no. 11, pp. 104-110, Nov. 2014.
[97] K. Huang and X. Zhou, Cutting the last wires for mobile communications by microwave power transfer," IEEE Commun. Mag., vol. 53, no. 6, pp. 86-93, Jun. 2015.
[98] M. Tacca, P. Monti, and A. Fumagalli, Cooperative and reliable ARQ protocols for energy harvesting wireless sensor nodes," IEEE Trans. Wireless Commun., vol. 6, no.7, pp. 2519-2529, Jul. 2007.
[99] S. Reddy and C. R. Murthy, Pro le-based load scheduling in wireless energy harvesting sensors for data rate maximization," in Proc. IEEE Int. Conf. Commun., 2010, pp. 1-5.
[100] Z. Wang, A. Tajer, and X. Wang, Communication of energy harvesting tags," IEEE Trans. Commun., vol. 60, no. 4, pp. 1159-1166, Apr. 2012.
[101] N. Michelusi, K. Stamatiou, and M. Zorzi, Transmission policies for energy harvesting sensors with time-correlated energy supply," IEEE Trans. Commun., vol. 61, no. 7, pp. 2988-3001, Jul. 2013.
[102] C. K. Ho, P. D. Khoa, and P. C. Ming, Markovian models for harvested energy in wireless communications," in IEEE Int. Conf. Commun. Syst., 2010, pp. 311-315.
[103] NREL. (2012, Feb.). Solar radiation resource information, Golden, CO, USA. [Online].
Available: http://www.nrel.gov/rredc/.
[104] J.-C. Lin, H.-K. Chang, M.-L. Ku, and H. V. Poor, Impact of imperfect source-torelay CSI in amplify-and-forward relay networks," IEEE Trans. Veh. Technol., vol. 66, iss. 6, pp. 5056-5069, Jun. 2017.
[105] H.-K. Chang, M.-L. Ku, and J.-C. Lin, On Stochastic Link and Energy Scheduling for Energy Harvesting Bidirectional Communications," IEEE Access, Vol. 8, No. 1, pp.20129-20145, 2020.
指導教授 林嘉慶 古孟霖(Jia-Chin Lin Meng-Lin Ku) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明