博碩士論文 107522111 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:16 、訪客IP:18.219.142.90
姓名 顏證泰(Cheng-Tai Yen)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 時間序列轉圖像卷積長短期記憶神經網路製造品質預測
(Time Series to Image-based Convolutional Long Short-Term Memory Neural Networks for Manufacturing Quality Prediction)
相關論文
★ 以IEEE 802.11為基礎行動隨意無線網路之混合式省電通訊協定★ 以范諾圖為基礎的對等式網路虛擬環境相鄰節點一致性研究
★ 行動隨意網路可調適及可延展之位置服務協定★ 同儕式網路虛擬環境高效率互動範圍群播
★ 巨量多人線上遊戲之同儕網路互動範圍語音交談★ 基於范諾圖之同儕式網路虛擬環境狀態管理
★ 利用多變量分析 之多人線上遊戲信任使用者選擇★ 無位置資訊無線感測網路之覆蓋及連通維持
★ 同儕網路虛擬環境3D串流同儕選擇策略★ 一個使用802.11與RFID技術的無所不在導覽系統U-Guide之設計與實作
★ 同儕式三維資料串流★ IM Finder: 透過即時通訊網路線上使用者找尋解答
★ 無位置資訊無線感測網路自走車有向天線導航與協調演算法★ 多匯點無線感測網路省能及流量分散事件輪廓追蹤
★ 頻寬感知同儕式3D串流★ 無線感測網路旋轉指向天線定位法
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在人工智慧(artificial intelligence, AI)和物聯網(Internet of Things, IoT)技術的驅動下,智慧製造(smart manufacturing)成為當今熱門的研究議題。製造品質(manufacturing quality, MQ)預測是智慧製造的基礎之一,對於某些無法快速測量品質,或是比較難測量品質的產品,希望可以基於生產前的靜態參數以及生產過程中收集的動態狀態時間序列資料,在產品生產後快速並且準確地預測其製造品質。
本論文提出兩種方法進行線切割放電加工(wire electrical discharge machining, WEDM)工件品質預測,明確地說是進行工件表面粗糙度(surface roughness)預測。第一種方法利用格拉姆角度域(Gramian angular field)轉換時間序列資料為二維圖像,並配合卷積長短期記憶(convolutional long short-term memory, CLSTM)神經網路預測工件表面粗糙度。第二種方法利用馬可夫轉換域(Markov transition field, MTF)轉換時間序列資料為二維圖像,並配合卷積長短期記憶神經網路預測工件表面粗糙度。實驗結果顯示,本論文提出的兩種方法在平均絕對百分比誤差(mean absolute percentage error, MAPE)方面皆優於一個近期提出的相關方法。
摘要(英) Driven by artificial intelligence (AI) and Internet of Things (IoT) technologies, smart manufacturing has become a hot topic today. Predicting manufacturing quality (MQ) is fundamental in smart manufacturing. For some manufactured products whose quality cannot be measured speedily or handily, it is desirable to fast and accurately predict the MQ based on static data, such as manufacturing parameters tuned before production, as well as dynamic data, such as manufacturing conditions gathered during production.
This paper proposes two methods to predict the MQ of wire electrical discharge machining (WEDM), specifically, to predict the workpiece surface roughness (SR). The first method uses Gramian angular field (GAF) to represent dynamic WEDM manufacturing conditions as images, and uses convolutional long short-term memory (CLSTM) neural networks to predict the workpiece SR. The second method uses Markov transition field (MTF) to represent dynamic WEDM manufacturing conditions as images, and uses CLSTM neural networks to predict the workpiece SR. Experiments are conducted to evaluate the performance of the proposed methods. As will be shown, the proposed methods outperform a related method proposed recently in terms of the mean absolute percentage error (MAPE).
關鍵字(中) ★ 人工智慧
★ 物聯網
★ 智慧製造
★ 製造品質
★ 線切割放電加工
★ 格拉姆角度域
★ 馬可夫轉換域
★ 卷積神經網路
★ 長短期記憶神經網路
關鍵字(英) ★ artificial intelligence
★ Internet of Things
★ smart manufacturing
★ manufacturing quality
★ wire electrical discharge machining
★ Gramian angular field
★ Markov transition field
★ convolutional neural network
★ long short-term memory neural network
論文目次 中文摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
一、 緒論 1
1.1. 研究背景與動機 1
1.2. 研究目的與貢獻 1
1.3. 相關文獻研討 2
1.4. 論文架構 2
二、 背景知識 3
2.1. 線切割放電加工 3
2.1.1. 放電加工 3
2.1.2. 線切割放電加工 4
2.2. 分段聚合近似法 4
2.3. 格拉姆角度域 5
2.3.1. 格拉姆矩陣 5
2.3.2. 極座標表示法 5
2.3.3. 格拉姆角度域 6
2.4. 馬可夫轉換域 7
2.4.1. 馬可夫鏈 7
2.4.2. 馬可夫轉移矩陣 8
2.4.3. 馬可夫轉移機率矩陣 8
2.4.4. 馬可夫轉換域 9
2.5. 類神經網路 9
2.5.1. 類神經網路介紹 9
2.5.2. 前向傳播 12
2.5.3. 反向傳播 12
2.5.4. 激活函數 12
2.6. 深度學習 14
2.6.1. 深度學習介紹 14
2.6.2. 深度神經網路 14
2.6.3. 卷積神經網路 15
2.6.4. 遞歸神經網路 16
2.6.5. 長短期記憶神經網路 17
2.7. 相關方法 20
三、 問題定義 22
3.1. 問題定義 22
3.2. 標籤定義 23
四、 研究方法 25
4.1. 資料前處理 25
4.1.1. 資料縮放 25
4.1.2. 格拉姆角度域 26
4.1.3. 馬可夫轉換域 26
4.2. 模型架構 29
4.3. 模型優化 30
4.3.1. 提早停止 30
4.3.2. 交叉驗證 30
五、 實驗與效能評估 31
5.1. 實驗環境 31
5.2. 實驗結果 31
5.3. 前處理分析 33
六、 結論與未來展望 37
參考文獻 38
參考文獻 [1] K. H. Ho, et al. "State of the Art in Wire Electrical Discharge Machining (WEDM)." International Journal of Machine Tools and Manufacture, Vol. 44, No. 12-13, pp. 1247-1259, Oct. 2004.
[2] K. H. Ho, and S. T. Newman. "State of the Art Electrical Discharge Machining (EDM)." International Journal of Machine Tools and Manufacture, Vol. 43, No. 13, pp.1287-1300, Oct. 2003.
[3] C. L. Fan, and J. R. Jiang. "Surface Roughness Prediction Based on Markov Chain and Deep Neural Network for Wire Electrical Discharge Machining." 2019 IEEE Eurasia Conference on IOT, Communication and Engineering, Oct. 2019.
[4] U. Esme, A. Sagbas, and F. Kahraman. "Prediction of Surface Roughness in Wire Electrical Discharge Machining using Design of Experiments and Neural Networks." Iranian Journal of Science and Technology Transaction B: Engineering, Vol. 33, No. 3, pp. 231-240, June 2009.
[5] A. Kumar, V. Kumar, and J. Kumar. "Prediction of Surface Roughness in Wire Electric Discharge Machining (WEDM) Process based on Response Surface Methodology." International Journal of Engineering and Technology, Vol. 2, No. 4, pp. 708-712, Jan. 2012.
[6] 放電加工原理及應用
https://www.shs.edu.tw/works/essay/2017/03/2017030111003102.pdf, accessed in June 2020.
[7] 線切割放電加工
https://www.coursehero.com/file/52605873/2010-4-e1e12437-7ppt/, accessed in June 2020.
[8] I. Mitiche, et al. "Imaging Time Series for the Classification of EMI Discharge Sources." Sensors, Vol. 18, No. 9, Sep. 2018.
[9] F. R. Sánchez, and J. G. Cervera. "ECG Classification Using Artificial Neural Networks." Journal of Physics: Conference Series, Vol. 1221, No. 1, IOP Publishing, June 2019.
[10] T. A. Nagem, et al. "Deep Learning Technology for Predicting Solar Flares from (Geostationary Operational Environmental Satellite) Data." International Journal of Advanced Computer Science and Applications, Vol. 9, No. 1, Feb. 2018.
[11] C. L. Yang, Z. X. Chen, and C. Y. Yang. "Sensor Classification Using Convolutional Neural Network by Encoding Multivariate Time Series as Two-Dimensional Colored Images." Sensors, Vol. 20, No.1, Dec. 2019.
[12] Neurons introductions:
http://www.hkpe.net/hkdsepe/human_body/neuron.htm, accessed in June 2020.
[13] A. Kaplan, and M. Haenlein. "Siri, Siri, in my hand: Who’s the fairest in the land? On the interpretations, illustrations, and implications of artificial intelligence." Business Horizons, Vol. 62, No. 1, pp. 15-25, Jan. 2019.
[14] Getting started with deep learning:
https://medium.com/@syshen/%E5%85%A5%E9%96%80%E6%B7%B1%E5%BA%A6%E5%AD%B8%E7%BF%92-2-d694cad7d1e5, accessed in June 2020.
[15] Y. LeCun, et al. "Gradient-Based Learning Applied to Document Recognition." Proceedings of the IEEE, Vol. 86, No. 11, pp.2278-2324, Nov. 1998.
[16] S. Hochreiter, and J. Schmidhuber. "Long Short-Term Memory." Neural computation, Vol. 9, No. 8, pp. 1735-1780, Nov. 1997.
[17] Understanding LSTM Networks:
http://colah.github.io/posts/2015-08-Understanding-LSTMs/, accessed in June 2020.
[18] CHMER - Q4025L:
http://www.chmer.com/tw/products-view.php?id=76, accessed in June 2020.
[19] Tokyo Seimitsu – Surfcom 130A:
http://www.accretech.com.cn/surfcom.html, accessed in June 2020.
[20] Surface roughness:
https://tw.misumi-ec.com/pdf/tech/MSM1/Surface_Roughness.pdf, accessed in June 2020.
[21] Z. Wang, and T. Oates. "Encoding Time Series as Images for Visual Inspection and Classification Using Tiled Convolutional Neural Networks." Workshops at the Twenty-Ninth AAAI Conference on Artificial Intelligence, April 2015.
[22] M. Fahim, K. Fraz, and A. Sillitti. "TSI: Time Series to Imaging based Model for Detecting Anomalous Energy Consumption in Smart Buildings." Information Sciences, Vol. 523, pp.1-13, June 2020.
[23] J. R. Jiang. "An improved cyber-physical systems architecture for Industry 4.0 smart factories." Advances in Mechanical Engineering, Vol. 10, No. 6, June 2018.
[24] E. Keogh, et al. "Dimensionality Reduction for Fast Similarity Search in Large Time Series Databases." Knowledge and information Systems, Vol. 3, No. 3, pp.263-286, Aug. 2001.
指導教授 江振瑞(Jehn-Ruey Jiang) 審核日期 2020-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明