參考文獻 |
Robertson, S. (2004). Understanding inverse document frequency: on theoretical arguments for IDF. Journal of documentation.
Mihalcea, R., & Tarau, P. (2004, July). Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing (pp. 404-411).
Rose, S., Engel, D., Cramer, N., & Cowley, W. (2010). Automatic keyword extraction from individual documents. Text mining: applications and theory, 1, 1-20.
Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., ... & Polosukhin, I. (2017). Attention is all you need. In Advances in neural information processing systems (pp. 5998-6008).
Rush, A. M., Chopra, S., & Weston, J. (2015). A neural attention model for abstractive sentence summarization. arXiv preprint arXiv:1509.00685.
Devlin, J., Chang, M. W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training of deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805.
Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R., & Le, Q. V. (2019). Xlnet: Generalized autoregressive pretraining for language understanding. In Advances in neural information processing systems (pp. 5754-5764).
Liu, Y. (2019). Fine-tune BERT for extractive summarization. arXiv preprint arXiv:1903.10318.
Miller, D. (2019). Leveraging BERT for extractive text summarization on lectures. arXiv preprint arXiv:1906.04165.
Rajpurkar, P., Zhang, J., Lopyrev, K., & Liang, P. (2016). Squad: 100,000+ questions for machine comprehension of text. arXiv preprint arXiv:1606.05250.
Zhou, Q., Yang, N., Wei, F., Tan, C., Bao, H., & Zhou, M. (2017, November). Neural question generation from text: A preliminary study. In National CCF Conference on Natural Language Processing and Chinese Computing (pp. 662-671). Springer, Cham.
Heilman, M. (2011). Automatic factual question generation from text. Language Technologies Institute School of Computer Science Carnegie Mellon University, 195.
Le, N. T., Kojiri, T., & Pinkwart, N. (2014). Automatic question generation for educational applications–the state of art. In Advanced Computational Methods for Knowledge Engineering(pp. 325-338). Springer, Cham.
Du, X., Shao, J., & Cardie, C. (2017). Learning to ask: Neural question generation for reading comprehension. arXiv preprint arXiv:1705.00106.
Zhao, Y., Ni, X., Ding, Y., & Ke, Q. (2018). Paragraph-level neural question generation with maxout pointer and gated self-attention networks. In Proceedings of the 2018 Conference on Empirical Methods in Natural Language Processing (pp. 3901-3910).
Sutskever, I., Vinyals, O., & Le, Q. V. (2014). Sequence to sequence learning with neural networks. In Advances in neural information processing systems (pp. 3104-3112).
Kriangchaivech, K., & Wangperawong, A. (2019). Question Generation by Transformers. arXiv preprint arXiv:1909.05017.
Kim, Y., Lee, H., Shin, J., & Jung, K. (2019, July). Improving neural question generation using answer separation. In Proceedings of the AAAI Conference on Artificial Intelligence(Vol. 33, pp. 6602-6609).
Radford, A., Wu, J., Child, R., Luan, D., Amodei, D., & Sutskever, I. (2019). Language models are unsupervised multitask learners. OpenAI Blog, 1(8), 9.
Chan, Y. H., & Fan, Y. C. (2019, November). A Recurrent BERT-based Model for Question Generation. In Proceedings of the 2nd Workshop on Machine Reading for Question Answering (pp. 154-162).
Klein, T., & Nabi, M. (2019). Learning to Answer by Learning to Ask: Getting the Best of GPT-2 and BERT Worlds. arXiv preprint arXiv:1911.02365.
Krishna, K., & Iyyer, M. (2019). Generating Question-Answer Hierarchies. arXiv preprint arXiv:1906.02622.
Ellis B. Page. 1967. Grading essays by computer: progress report. In Proceedings of the Invitational Conference on Testing Problems, pages 87–100.
Landauer, T. K. & Dumais, S. T. (1997). A solution to Plato′s problem: The Latent Semanctic Analysis theory of the acquisition, induction, and representation of knowledge. Psychological Review, 104, 211-140
Foltz, P. W., Laham, D., & Landauer, T. K. (1999). The intelligent essay assessor: Applications to educational technology. Interactive Multimedia Electronic Journal of Computer-Enhanced Learning, 1(2), 939-944.
Thomas K. Landauer, Darrell Laham, and Peter W. Foltz. (2003). Automated scoring and annotation of essays with the Intelligent Essay Assessor. In M.D. Shermis and J.C. Burstein, editors, Automated essay scoring: A cross-disciplinary perspective, pages 87–112.
Zhang, L., Huang, Y., Yang, X., Yu, S., & Zhuang, F. (2019). An automatic short-answer grading model for semi-open-ended questions. Interactive Learning Environments, 1-14.
Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
Hasanah, U., Permanasari, A. E., Kusumawardani, S. S., & Pribadi, F. S. (2019). A scoring rubric for automatic short answer grading system. Telkomnika, 17(2), 763-770.
Wang, Z., Lan, A. S., Waters, A. E., Grimaldi, P., & Baraniuk, R. G. A Meta-Learning Augmented Bidirectional Transformer Model for Automatic Short Answer Grading.
Liu, T., Ding, W., Wang, Z., Tang, J., Huang, G. Y., & Liu, Z. (2019, June). Automatic Short Answer Grading via Multiway Attention Networks. In International Conference on Artificial Intelligence in Education (pp. 169-173). Springer, Cham.
Sung, C., Dhamecha, T., Saha, S., Ma, T., Reddy, V., & Arora, R. (2019, November). Pre-Training BERT on Domain Resources for Short Answer Grading. In Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP) (pp. 6073-6077).
Papineni, K., Roukos, S., Ward, T., & Zhu, W. J. (2002, July). BLEU: a method for automatic evaluation of machine translation. In Proceedings of the 40th annual meeting on association for computational linguistics (pp. 311-318). Association for Computational Linguistics.
Torrey, L., & Shavlik, J. (2010). Transfer learning. In Handbook of research on machine learning applications and trends: algorithms, methods, and techniques (pp. 242-264). IGI Global. |