博碩士論文 107423029 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:59 、訪客IP:3.15.15.160
姓名 李嘉信(Jia-Shin Li)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 跨平台推薦系統,基於Facebook使用者特質推薦Instagram熱門帳號
相關論文
★ 零售業商業智慧之探討★ 有線電話通話異常偵測系統之建置
★ 資料探勘技術運用於在學成績與學測成果分析 -以高職餐飲管理科為例★ 利用資料採礦技術提昇財富管理效益 -以個案銀行為主
★ 晶圓製造良率模式之評比與分析-以國內某DRAM廠為例★ 商業智慧分析運用於學生成績之研究
★ 運用資料探勘技術建構國小高年級學生學業成就之預測模式★ 應用資料探勘技術建立機車貸款風險評估模式之研究-以A公司為例
★ 績效指標評估研究應用於提升研發設計品質保證★ 基於文字履歷及人格特質應用機械學習改善錄用品質
★ 以關係基因演算法為基礎之一般性架構解決包含限制處理之集合切割問題★ 關聯式資料庫之廣義知識探勘
★ 考量屬性值取得延遲的決策樹建構★ 從序列資料中找尋偏好圖的方法 - 應用於群體排名問題
★ 利用分割式分群演算法找共識群解群體決策問題★ 以新奇的方法有序共識群應用於群體決策問題
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-6-27以後開放)
摘要(中) 隨著社交媒體在人們生活中扮演的角色越來越重要,吸引了各個商業圈、研究圈投入的大量資金與研究。因此,該如何有效的提高社交媒體向目的客戶群分發相關的資訊及廣告已經變成了一個非常重要的問題。且由於社交媒體的普及化,導致擁有大量知識豐富的用戶參與,因此社交媒體更可以視為一項支持用戶下決策的有力參考因素。甚至於用戶會受到自己的朋友或追蹤者的影響而受到對同類型事物很大程度的喜好度影響。但大多數的社交媒體個性化推薦服務都基於單一平 台用戶建模。這可能將會遇到 數據短缺和用戶數量不足等 問題。 在本文中,我們通過彙整兩大社群平台的用戶資訊,分別為 Facebook不公開使用者資訊 與 Instagram公開熱門帳號資訊 。並建立跨平台推薦模型作為解決方案。傳統推 薦方法通常需要對推薦目標有非常多的資訊才會有較好的推薦效果,相反的,當對目 標的特質、興趣不太了解的時候,效果就會變差。而本文提出的辦法與傳統方法不一 樣的是我們可以克服對目標資訊不足時還可以 擁 有不錯的推薦效果。 本文 透過 分析兩大目標 平台的用戶行為資訊 並使用基於內容 (Content base)的方法 考量兩者 間 的特質相關性。並嚴謹的設計實驗且透過號招實際用戶幫助我們證明此方 法的有效性。
摘要(英) Currently, although many recommended system applications are launched, usually these recommended applications are executed on the same platform. These single-platform recommendation systems face two challenges. The first problem is the lack of data that can be referenced and used in the recommendation system. For example, for the Facebook platform, the recommended material can only come from the Facebook community itself, not from Instagram. The second problem is the problem of insufficient number of users. For example, advertisers on Instagram can only send their ads to users on Instagram, not Facebook users. In response to these two problems, this paper proposes a cross-platform recommendation system from Facebook to Instagram. This has two advantages. First, the data of the two platforms can be integrated and complement each other, thereby greatly expanding the source and richness of recommended data. Second, Instagram advertisers can not only send ads to users on the same platform, but to Facebook users with the same preferences. This can help the system expand its customer base and help better target marketing. Finally, we use a series of experiments to prove the effectiveness of the entire method. Experimental results show that this method has a good effect on the similarity analysis of Facebook users and Instagram popular accounts, and the recommendation results also highly match the user′s preferences.
關鍵字(中) ★ 推薦
★ 社群媒體
★ Facebook
★ Instagram
關鍵字(英) ★ Recommendation
★ social media
★ Facebook
★ Instagram
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vii
表目錄 viii
第一章、緒論 1
1-1研究背景 1
1-2研究動機 3
1-2-1 數據短缺。 3
1-2-2 用戶數量不足。 3
1-3 研究目的 3
第二章、文獻探討 5
2-1-1 基於社群媒體的產品推薦 5
2-1-2 基於社群媒體的意見領袖推薦 6
2-1-3 基於社群媒體的旅遊路線推薦 7
2-1-4 基於社群媒體的新聞廣告推薦 8
2-1-5 基於社群媒體的Hashtags推薦 8
2-1-6 基於社群媒體的朋友推薦 9
2-1-7 基於社群媒體的電影推薦 10
2-1-8基於社群媒體的推薦系統總結 10
2-2 社交媒體的常用推薦技術 11
2-2-1 基於內容(Content Based) 12
2-2-2 協同過濾(Collaborative Filtering) 12
2-2-3 混合推薦(Hybrid Recommendation ) 13
第三章、研究架構 15
3-1 研究概述 15
3-2 Preference similarity module 16
3-2-1 文章內文整合 18
3-2-2 文本斷字斷詞處理 19
3-2-3 文本冗言清理 19
3-2-4 取得LDA概率分布 19
3-2-5 計算LDA 相似度,取得 Pre(Fi,Ij) 20
3-3 Popularity Calculation module 21
3-3-1 用戶發文(post)的平均響應次數 22
3-3-2 用戶post響應的平均情緒分數 22
3-3-3 用戶Post被點擊“LIKE”的平均數 23
3-3-4 用戶被多少使用者追隨(Follow) 23
3-3-5 用戶被朋友標記Post總數 24
3-3-6 標準化(normalize) 24
3-3-7 取得Pop (Fi, Ij) 總分 25
3-4 Activity Calculation Module 26
3-4-1 用戶發布的post數量 27
3-4-2 用戶最近一個月的post數量 27
3-4-3 用戶最新一次發文在多久以前 28
3-4-4 用戶追蹤了多少人 28
3-4-5 標準化(normalize) 29
3-4-6 取得Act (Fi , Ij) 30
3-5 Picture Similarity Module 31
3-5-1 相似度計算演算法 32
3-5-2 關鍵字提取說明 33
3-5-3 文字向量化說明 34
3-5-4 餘弦相似度計算 35
3-5-4 Pic(Fi, Ij)取得 36
第四章 實驗設計 38
4-1 實驗環境 38
4-1-1 Facebook 個人貼文 38
4-1-2 Instagram公開帳號資訊 38
4-1-3系統開發平台 38
4-2 實驗資料蒐集 39
4-2-1 Facebook使用者個人資料蒐集 40
4-2-2 20個Instagram熱門公開帳號類型差異性 41
4-2-3 Instagram帳號相關資料蒐集 42
4-2-4 使用者對Instagram帳號喜好度評分表 43
4-3 衡量指標 43
4-4 實驗架構 45
4-5 實驗一 45
4-5-1 實驗一小結 46
4-6 實驗二 47
4-6-1 實驗二小結 48
4-7 實驗三 49
4-7-1 實驗三小結 50
4-8 實驗四 51
4-8-1 實驗四小結 52
4-9 實驗五 53
4-9-1 實驗五小結 54
4-10 實驗總結 55
4-10-1 情況一 55
4-10-2 情況二 56
4-10-3 情況三 57
4-10-4 實驗結論 58
第五章 結論 59
5 -1 研究貢獻 59
5 -2 未來研究 59
參考文獻 61
附錄:使用者對20位Instagram帳號喜好度 65


圖目錄
圖 1 系統架構圖 16
圖 2 Pre 流程圖 18
圖 3 分詞精確模式範例 19
圖 4 線性正規化範例 30
圖 5 Picture Similarity Module - 流程圖 32
圖 6 Picture Similarity Module - 演算法 33
圖 7 Picture Similarity Module - 關鍵字提取 34
圖 8 Picture Similarity Module - 關鍵字向量化 35
圖 9 Picture Similarity Module - 餘弦相似度比較 36
圖 10 Picture Similarity Module - Pic(Fi, Ij) 取得 37
圖 11 JupyterLab平台 示意圖 39
圖 12 實驗一皮爾森相關係數 46
圖 13 實驗二權重分配 48
圖 14 實驗二皮爾森相關係數 48
圖 15 實驗三權重分配 50
圖 16 實驗三皮爾森相關係數 50
圖 17 實驗四權重分配與結果 52
圖 18 實驗五權重分配與結果 54
圖 19 實驗總結情況一 56
圖 20 實驗總結情況二 57
圖 21 實驗總結情況三 58

表目錄
表格 1 Facebook 使用者相關資料 40
表格 2 Instagram 帳號背景資料 41
表格 3 Instagram 帳號相關資料 42
表格 4 使用者對Instagram帳號喜好度評分表 43
表格 5 皮爾森相關性意義 44
參考文獻 Abel, F., Herder, E., Houben, G.-J., Henze, N., & Krause, D. (2013). Cross-system user modeling and personalization on the social web. User Modeling and User-Adapted Interaction, 23(2-3), 169-209.
Aghdam, S. M., & Navimipour, N. J. (2016). Opinion leaders selection in the social networks based on trust relationships propagation. Karbala International Journal of Modern Science, 2(2), 88-97.
Al-Sharawneh, J., & Williams, M.-A. (2010). Credibility-based social network recommendation: Follow the leader. Paper presented at the ACIS 2010 Proceedings-21st Australasian Conference on Information Systems.
Bach, N. X., Do Hai, N., & Phuong, T. M. (2016). Personalized recommendation of stories for commenting in forum-based social media. Information Sciences, 352, 48-60.
Buda, A., & Jarynowski, A. (2010). Life time of correlations and its applications: Andrzej Buda Wydawnictwo NiezaleĹĽne.
Castro, J., Lu, J., Zhang, G., Dong, Y., & Martínez, L. (2017). Opinion dynamics-based group recommender systems. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 48(12), 2394-2406.
Clements, M., Serdyukov, P., de Vries, A. P., & Reinders, M. J. (2011). Personalised travel recommendation based on location co-occurrence. arXiv preprint arXiv:1106.5213.
Cohen, J. (1988). Statistical power analysis for the social sciences.
Diao, Q., Qiu, M., Wu, C.-Y., Smola, A. J., Jiang, J., & Wang, C. (2014). Jointly modeling aspects, ratings and sentiments for movie recommendation (JMARS). Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
Dooms, S., De Pessemier, T., & Martens, L. (2013). Movietweetings: a movie rating dataset collected from twitter. Paper presented at the Workshop on Crowdsourcing and human computation for recommender systems, CrowdRec at RecSys.
Erdoğmuş, İ. E., & Cicek, M. (2012). The impact of social media marketing on brand loyalty. Procedia-Social and Behavioral Sciences, 58, 1353-1360.
Esparza, S. G., O’Mahony, M. P., & Smyth, B. (2012). Mining the real-time web: a novel approach to product recommendation. Knowledge-Based Systems, 29, 3-11.
Frolov, E., & Oseledets, I. (2018). Revealing the Unobserved by Linking Collaborative Behavior and Side Knowledge. arXiv preprint arXiv:1807.10634.
Godin, F., Slavkovikj, V., De Neve, W., Schrauwen, B., & Van de Walle, R. (2013). Using topic models for twitter hashtag recommendation. Paper presented at the Proceedings of the 22nd International Conference on World Wide Web.
Goh, K.-I., Cusick, M. E., Valle, D., Childs, B., Vidal, M., & Barabási, A.-L. (2007). The human disease network. Proceedings of the national academy of sciences, 104(21), 8685-8690.
Gou, L., You, F., Guo, J., Wu, L., & Zhang, X. (2011). Sfviz: interest-based friends exploration and recommendation in social networks. Paper presented at the Proceedings of the 2011 Visual Information Communication-International Symposium.
He, C., Parra, D., & Verbert, K. (2016). Interactive recommender systems: A survey of the state of the art and future research challenges and opportunities. Expert Systems with Applications, 56, 9-27.
Kywe, S. M., Hoang, T.-A., Lim, E.-P., & Zhu, F. (2012). On recommending hashtags in twitter networks. Paper presented at the International conference on social informatics.
Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen ways to look at the correlation coefficient. The American Statistician, 42(1), 59-66.
Li, F., & Du, T. C. (2011). Who is talking? An ontology-based opinion leader identification framework for word-of-mouth marketing in online social blogs. Decision Support Systems, 51(1), 190-197.
Li, Q., Wang, J., Chen, Y. P., & Lin, Z. (2010). User comments for news recommendation in forum-based social media. Information Sciences, 180(24), 4929-4939.
Li, Y.-M., Lin, L.-F., & Ho, C.-C. (2017). A social route recommender mechanism for store shopping support. Decision Support Systems, 94, 97-108.
Li, Y., Ma, S., Zhang, Y., & Huang, R. (2013). An improved mix framework for opinion leader identification in online learning communities. Knowledge-Based Systems, 43, 43-51.
Lin, L.-F., Li, Y.-M., & Wu, W.-H. (2015). A social endorsing mechanism for target advertisement diffusion. Information & Management, 52(8), 982-997.
Mendat, D. R., Cassidy, A. S., Zarrella, G., & Andreou, A. G. (2018). Word2vec word similarities on IBM′s TrueNorth neurosynaptic system. Paper presented at the 2018 IEEE Biomedical Circuits and Systems Conference (BioCAS).
Mihalcea, R., & Tarau, P. (2004). Textrank: Bringing order into text. Paper presented at the Proceedings of the 2004 conference on empirical methods in natural language processing.
Onnela, J.-P., Saramäki, J., Hyvönen, J., Szabó, G., Lazer, D., Kaski, K., . . . Barabási, A.-L. (2007). Structure and tie strengths in mobile communication networks. Proceedings of the national academy of sciences, 104(18), 7332-7336.
Papadimitriou, A., Symeonidis, P., & Manolopoulos, Y. (2012). Fast and accurate link prediction in social networking systems. Journal of Systems and Software, 85(9), 2119-2132.
Pauws, S., & Eggen, B. (2002). PATS: Realization and user evaluation of an automatic playlist generator. Paper presented at the ISMIR.
Pazzani, M. J., & Billsus, D. (2007). Content-based recommendation systems. In The adaptive web (pp. 325-341): Springer.
Roberts, S. G., Wilson, R., Fedurek, P., & Dunbar, R. (2008). Individual differences and personal social network size and structure. Personality and individual differences, 44(4), 954-964.
Sevli, O., & Küçüksille, E. U. (2017). Advertising recommendation system based on dynamic data analysis on Turkish speaking Twitter users. Tehnicki Vjesnik, 24(2), 571-578.
She, J., & Chen, L. (2014). Tomoha: Topic model-based hashtag recommendation on twitter. Paper presented at the Proceedings of the 23rd International Conference on World Wide Web.
Si, Y., Zhang, F., & Liu, W. (2019). An adaptive point-of-interest recommendation method for location-based social networks based on user activity and spatial features. Knowledge-Based Systems, 163, 267-282.
Stigler, S. M. (1989). Francis Galton′s account of the invention of correlation. Statistical Science, 73-79.
Subramaniyaswamy, V., Vijayakumar, V., Logesh, R., & Indragandhi, V. (2015). Intelligent travel recommendation system by mining attributes from community contributed photos. Procedia Computer Science, 50, 447-455.
Tsai, W., & Ghoshal, S. (1998). Social capital and value creation: The role of intrafirm networks. Academy of management Journal, 41(4), 464-476.
Victor, P., Cornelis, C., De Cock, M., & Teredesai, A. M. (2009). A comparative analysis of trust-enhanced recommenders for controversial items. Paper presented at the Third International AAAI Conference on Weblogs and Social Media.
Wang, Z., Liao, J., Cao, Q., Qi, H., & Wang, Z. (2014). Friendbook: a semantic-based friend recommendation system for social networks. IEEE transactions on mobile computing, 14(3), 538-551.
Wang, Z., Yu, X., Feng, N., & Wang, Z. (2014). An improved collaborative movie recommendation system using computational intelligence. Journal of Visual Languages & Computing, 25(6), 667-675.
Wei, S., Zheng, X., Chen, D., & Chen, C. (2016). A hybrid approach for movie recommendation via tags and ratings. Electronic Commerce Research and Applications, 18, 83-94.
Wen, Y.-T., Cho, K.-J., Peng, W.-C., Yeo, J., & Hwang, S.-w. (2015). KSTR: Keyword-aware skyline travel route recommendation. Paper presented at the 2015 IEEE international conference on data mining.
Zavadskas, E. K., & Turskis, Z. (2010). A new additive ratio assessment (ARAS) method in multicriteria decision‐making. Technological and Economic Development of Economy, 16(2), 159-172.
Zhao, F., Zhu, Y., Jin, H., & Yang, L. T. (2016). A personalized hashtag recommendation approach using LDA-based topic model in microblog environment. Future Generation Computer Systems, 65, 196-206.
Zhao, W. X., Li, S., He, Y., Wang, L., Wen, J.-R., & Li, X. (2016). Exploring demographic information in social media for product recommendation. Knowledge and Information Systems, 49(1), 61-89.
Zhao, X. W., Guo, Y., He, Y., Jiang, H., Wu, Y., & Li, X. (2014). We know what you want to buy: a demographic-based system for product recommendation on microblogs. Paper presented at the Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining.
Zhou, T., Medo, M., Cimini, G., Zhang, Z.-K., & Zhang, Y.-C. (2011). Emergence of scale-free leadership structure in social recommender systems. PLoS One, 6(7).
行銷人 (Producer). (2018). 臺灣網路社群趨勢全分析. Retrieved from https://www.marketersgo.com/marketing/201804/2017-social-media-analysis-report/
指導教授 陳彥良(Yan-Liang chen) 審核日期 2020-6-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明