參考文獻 |
Andrzejak, A. et al. 2019. Agile construction of data science DSLs (tool demo). Proceedings of the 18th ACM SIGPLAN International Conference on Generative Programming: Concepts and Experiences (Athens, Greece, Oct. 2019), 27–33.
Armbrust, M. et al. 2015. Spark SQL: Relational Data Processing in Spark. Proceedings of the 2015 ACM SIGMOD International Conference on Management of Data (Melbourne, Victoria, Australia, May 2015), 1383–1394.
Chambers, J.M. and Hastie, T.J. 1991. Statistical Models in S. CRC Press, Inc.
Codd, E.F. 1970. A relational model of data for large shared data banks. Communications of the ACM. 13, 6 (Jun. 1970), 377–387.
van Deursen, A. et al. 2000. Domain-specific Languages: An Annotated Bibliography. SIGPLAN Not. 35, 6 (Jun. 2000), 26–36.
Frames.CSV: 2020. https://hackage.haskell.org/package/Frames-0.6.4/docs/Frames-CSV.html. Accessed: 2020-05-10.
How pandas infers data types when parsing CSV files: 2018. https://rushter.com/blog/pandas-data-type-inference/. Accessed: 2020-05-31.
Hudak, P. 1996. Building Domain-specific Embedded Languages. ACM Comput. Surv. 28, 4es (Dec. 1996).
jsiek 2014. What is Gradual Typing | Jeremy Siek.
json-autotype: Automatic type declaration for JSON input data: //hackage.haskell.org/package/json-autotype. Accessed: 2020-05-10.
Kiselyov, O. et al. 2010. Fun with type functions. Reflections on the work of CAR hoare. Springer. 301–331.
Kluyver, T. et al. 2016. Jupyter Notebooks – a publishing format for reproducible computational workflows. Positioning and power in academic publishing: Players, agents and agendas (2016), 87–90.
Ma, E.J. et al. 2019. pyjanitor: A cleaner aPI for cleaning data. Proceedings of the 18th Python in Science Conference (2019), 50–53.
Martin-Löf, P. 1975. An Intuitionistic Theory of Types: Predicative Part. Studies in Logic and the Foundations of Mathematics. H.E. Rose and J.C. Shepherdson, eds. Elsevier. 73–118.
microsoft/pyright: 2020. https://github.com/microsoft/pyright. Accessed: 2020-06-22.
Milner, R. 1978. A theory of type polymorphism in programming. Journal of Computer and System Sciences. 17, (1978), 348–375.
mypy - Optional Static Typing for Python: http://mypy-lang.org/. Accessed: 2020-05-30.
openlawlibrary/pygls: 2020. https://github.com/openlawlibrary/pygls. Accessed: 2020-05-24.
PEP 484 – Type Hints: https://www.python.org/dev/peps/pep-0484/. Accessed: 2020-05-13.
Petersohn, D. et al. 2020. Towards Scalable Dataframe Systems. arXiv:2001.00888 [cs]. (Jan. 2020).
Petricek, T. 2017. Data exploration through dot-driven development. European Conference on Object-Oriented Programming (Barcelona, Spain, 2017).
Petricek, T. et al. 2016. Types from data: making structured data first-class citizens in F#. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation (Santa Barbara, CA, USA, Jun. 2016), 477–490.
Proof of Concept: TypedDataFrame · GitBook: https://typelevel.org/frameless/TypedDataFrame.html. Accessed: 2020-06-22.
Pyre · A performant type-checker for Python 3: https://pyre-check.org/. Accessed: 2020-06-22.
quicktype/quicktype: https://github.com/quicktype/quicktype. Accessed: 2020-05-10.
R Core Team 2020. R: A language and environment for statistical computing.
Siek, J.G. and Taha, W. 2006. Gradual Typing for Functional Languages. (2006).
Syme, D. et al. 2013. Themes in information-rich functional programming for internet-scale data sources. Proceedings of the 2013 workshop on Data driven functional programming (Rome, Italy, Jan. 2013), 1–4.
team, T. pandas development 2020. pandas-dev/pandas: Pandas. (Feb. 2020).
typelevel/frameless: https://github.com/typelevel/frameless. Accessed: 2020-05-12.
Wand, M. 1989. Type inference for record concatenation and multiple inheritance. [1989] Proceedings. Fourth Annual Symposium on Logic in Computer Science (Jun. 1989), 92–97.
Wes McKinney 2010. Data Structures for Statistical Computing in Python. Proceedings of the 9th Python in Science Conference (2010), 56–61.
Wu, Y. 2016. Is a Dataframe Just a Table? PLATEAU (2016), 10. |