博碩士論文 107423012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:3.143.168.172
姓名 高明郁(Ming-Yu Kao)  查詢紙本館藏   畢業系所 資訊管理學系
論文名稱 自駕車全景動態偵測防撞系統
(Collision Avoidance System of Automatic Vehicle Panorama Dynamic Detection)
相關論文
★ 探討國內田徑競賽資訊系統-以103年全國大專田徑公開賽資訊系統為例★ 生物晶片之基因微陣列影像分析之研究
★ 台灣資訊家電產業IPv6技術地圖與發展策略之研究★ 台灣第三代行動通訊產業IPv6技術地圖與發展策略之研究
★ 影響消費者使用電子書閱讀器採納意願之研究★ 以資訊素養映對數位學習平台功能之研究
★ 台商群聚指標模式與資料分析之研究★ 未來輪輔助軟體發展之需求擷取研究
★ 以工作流程圖展現未來研究方法配適於前瞻研究流程之研究★ 以物件導向塑模未來研究方法配適於前瞻研究之系統架構
★ 應用TRIZ 探討核心因素 建構電子商務新畫布★ 企業策略資訊策略人力資源管理策略對組織績效的影響
★ 採用Color Petri Net方法偵測程式原始碼緩衝區溢位問題★ 簡單且彈性化的軟體代理人通訊協定之探討與實作
★ 利用分析層級程序法探討台灣中草藥製造業之關鍵成功因素★ 利用微陣列資料分析於基因調控網路之建構與預測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隨著物聯網和5G的技術日漸成熟,自駕車相關的研究和應用也隨之迅速地發展,目的為讓自駕車可以在變化快速的交通環境中安全行駛,降低交通事故的發生率,但由於目前自駕車受到各方面發展的限制,因此,仍多以駕駛者根據系統之預警自行做出決策。
為了使自駕車能在短暫的時間做出更正確的判斷,以降低發生碰撞的機率,系統以自駕車為中心的360度全景偵測範圍,依行駛速度動態地調整範圍大小,偵測範圍可劃分為「警示區域」和「鄰近區域」,利用LSTM-CNN的混合式架構分別對兩個區域的車輛及物體之間的動態交互作用進行軌跡預測,再將自駕車警示區域的車輛及物體預測後的軌跡,進行所需碰撞時間的計算,並且根據自駕車的行駛速度調整所需預警的碰撞時間 (Time to Collision, TTC),以減少碰撞預警時間過早或不及的狀況。
若需確立防撞系統的安全性,則需使模型預測軌跡具有相當的準確性,因此,本研究採用擁有複雜且異構交通環境的Argoverse Motion Forecasting v1.1的部分資料集,並以TraPHic Chandra, Bhattacharya, Bera, & Manocha (2019)為參考方法進行比較,實驗證明在評估指標最終位移誤差(Final Displacement Error, FDE)和平均位移誤差(Average Displacement Error, ADE)皆較TraPHic佳,代表提出的方法能夠更加準確地預測軌跡,因此,將此預測值作為計算所需碰撞時間的輸入,能夠即早提供具有可靠性的碰撞預警。
摘要(英) As Internet of things and 5G technology are gradually mature, researchs related to automatic vehicle are also growing rapidly. The purposes of those research and applications are to make automatic vehicle drive safely in fast-changing traffic environment and reduce traffic accidents. However, due to various aspects of limitations, drivers still make their own decisions based on system warnings in automatic vehicles.
In order to let Self-driving make correct decisions in short time to reduce the probability of collisions, the system takes the self-driving as the center of the 360-degree panoramic detection range. Besides, based on driving speed to dynamically adjust range size, warning area and nearby area are divides. Using the hybrid architecture of LSTM-CNN to predict the trajectory of the dynamic interaction between vehicles and objects in the divides areas, and then calculating the required collision time by the vehicles and the predicted trajectories of objects in self-driving warning area. Still, according to the speed of self-driving, Time to Collision for warning can be adjusted so as to reduce the situation that the collision warning time is too early or too late.
If the safety of collision avoidance system needs to be established, the model with accuracy is necessary to be made to predict the trajectory. Thus, the dataset of Argoverse Motion Forecasting v1.1 is adopted with complex and heterogeneous traffic environment, and Traphic is used as reference to execute comparison. According to the experiment, Final Displacement Error (FDE) and Average Displacement Error (ADE) of evaluation criteria are better than the method of TraPhic, means the method of this study can predict the trajectory with higher accuracy. Therefore, using the predicted value as the input for calculating the required collision time can provide more reliable and early warning of collision.
關鍵字(中) ★ 自駕車
★ 避免碰撞
★ 軌跡預測
★ 動態交互
關鍵字(英) ★ Self driving
★ Collision Avoidance
★ Trajectory Prediction
★ Dynamic Interaction
論文目次 摘要 I
Abstract II
目錄 III
圖目錄 IV
表目錄 V
第一章、 緒論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 研究目的 2
1.4 論文架構 3
第二章、 文獻探討 5
2.1 軌跡預測 5
2.2 防撞預警 10
第三章、 研究方法 13
3.1 研究架構 13
3.2 動態交互 15
3.3 軌跡預測 18
3.4 防撞預警 20
第四章、 研究結果 26
4.1 資料集 26
4.2 實驗環境 28
4.3 實驗方法 29
4.4 評估指標 31
4.5 實驗結果 32
第五章、 結論 35
5.1 結論與貢獻 35
5.2 研究限制 35
5.3 未來研究建議 36
參考文獻 37
參考文獻 Alahi, A., Goel, K., Ramanathan, V., Robicquet, A., Fei-Fei, L., & Savarese, S. (2016). Social lstm: Human trajectory prediction in crowded spaces. In Proceedings of the IEEE conference on computer vision and pattern recognition, 961-971.
Ammoun, S., & Nashashibi, F. (2009). Real time trajectory prediction for collision risk estimation between vehicles. In 2009 IEEE 5th International Conference on Intelligent Computer Communication and Processing, 417-422.
Behzadan, V., & Munir, A. (2019). Adversarial reinforcement learning framework for benchmarking collision avoidance mechanisms in autonomous vehicles. IEEE Intelligent Transportation Systems Magazine, 1.
Chandra, R., Bhattacharya, U., Bera, A., & Manocha, D. (2019). Traphic: Trajectory prediction in dense and heterogeneous traffic using weighted interactions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8483-8492.
Chandra, R., Guan, T., Panuganti, S., Mittal, T., Bhattacharya, U., Bera, A., & Manocha, D. (2020). Forecasting trajectory and behavior of road-agents using spectral clustering in graph-lstms. IEEE Robotics and Automation Letters, 5(3), 4882 - 4890.
Chang, M.-F., Lambert, J., Sangkloy, P., Singh, J., Bak, S., Hartnett, A., . . . Ramanan, D. (2019). Argoverse: 3d tracking and forecasting with rich maps. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 8748-8757.
Chen, Y., Zhang, T., Sun, D., Peng, X., & Liao, Y. (2015). Design and experiment of locating system for facilities agricultural vehicle based on wireless sensor network. Transactions of the Chinese Society of Agricultural Engineering, 31(10), 190-197.
Cheung, E., Bera, A., Kubin, E., Gray, K., & Manocha, D. (2018). Identifying driver behaviors using trajectory features for vehicle navigation. In 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), 3445-3452.
Chou, F.-C., Lin, T.-H., Cui, H., Radosavljevic, V., Nguyen, T., Huang, T.-K., . . . Djuric, N. (2019). Predicting motion of vulnerable road users using high-definition maps and efficient convnets. arXiv preprint arXiv:1906.08469.
Danielsson, S., Petersson, L., & Eidehall, A. (2007). Monte carlo based threat assessment: Analysis and improvements. In 2007 IEEE Intelligent Vehicles Symposium, 233-238.
Das, S., & Maurya, A. K. (2019). Defining Time-to-Collision Thresholds by the Type of Lead Vehicle in Non-Lane-Based Traffic Environments. IEEE Transactions on Intelligent Transportation Systems, 1-11.
Deo, N., & Trivedi, M. M. (2018a). Convolutional social pooling for vehicle trajectory prediction. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 1468-1476.
Deo, N., & Trivedi, M. M. (2018b). Multi-modal trajectory prediction of surrounding vehicles with maneuver based lstms. In 2018 IEEE Intelligent Vehicles Symposium (IV), 1179-1184.
Djuric, N., Radosavljevic, V., Cui, H., Nguyen, T., Chou, F.-C., Lin, T.-H., & Schneider, J. (2018). Motion prediction of traffic actors for autonomous driving using deep convolutional networks. arXiv preprint arXiv:1808.05819, 2.
Duan, Z., Yang, Y., Zhang, K., Ni, Y., & Bajgain, S. (2018). Improved deep hybrid networks for urban traffic flow prediction using trajectory data. IEEE Access, 6, 31820-31827.
Firl, J., Stübing, H., Huss, S. A., & Stiller, C. (2012). Predictive maneuver evaluation for enhancement of Car-to-X mobility data. In 2012 IEEE Intelligent Vehicles Symposium, 558-564.
Guo, S., Lin, Y., Feng, N., Song, C., & Wan, H. (2019). Attention based spatial-temporal graph convolutional networks for traffic flow forecasting. In Proceedings of the AAAI Conference on Artificial Intelligence, 922-929.
Gupta, A., Johnson, J., Fei-Fei, L., Savarese, S., & Alahi, A. (2018). Social gan: Socially acceptable trajectories with generative adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2255-2264.
Hayward, J. (1971). Near misses as a measure of safety at urban intersections: Pennsylvania Transportation and Traffic Safety Center.
Helbing, D., & Molnar, P. (1995). Social force model for pedestrian dynamics. Physical review E, 51(5), 4282.
Hirst, S., & Graham, R. (1997). Ergonomics and Safety of Intelligent Driver Interfaces. The Format and Perception of Collision Warnings.
Hogema, J., & Janssen, W. (1996). Effects of intelligent cruise control on driving behaviour: a simulator study: TNO.
Huang, S., Li, X., Zhang, Z., He, Z., Wu, F., Liu, W., . . . Zhuang, Y. (2016). Deep learning driven visual path prediction from a single image. IEEE Transactions on Image Processing, 25(12), 5892-5904.
Jamson, A. H., Merat, N., Carsten, O. M., & Lai, F. C. (2013). Behavioural changes in drivers experiencing highly-automated vehicle control in varying traffic conditions. Transportation research part C: emerging technologies, 30, 116-125.
Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of Basic Engineering, 82(1), 35-45.
Kalra, N., & Paddock, S. M. (2016). Driving to safety: How many miles of driving would it take to demonstrate autonomous vehicle reliability? Transportation Research Part A: Policy and Practice, 94, 182-193.
Katare, D., & El-Sharkawy, M. (2019). Embedded system enabled vehicle collision detection: an ANN classifier. In 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC), 0284-0289.
Kim, B., Kang, C. M., Kim, J., Lee, S. H., Chung, C. C., & Choi, J. W. (2017). Probabilistic vehicle trajectory prediction over occupancy grid map via recurrent neural network. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 399-404.
Lassoued, Y., Monteil, J., Gu, Y., Russo, G., Shorten, R., & Mevissen, M. (2017). A hidden Markov model for route and destination prediction. In 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), 1-6.
Lefèvre, S., Laugier, C., & Ibañez-Guzmán, J. (2011). Exploiting map information for driver intention estimation at road intersections. In 2011 IEEE Intelligent Vehicles Symposium (IV), 583-588.
Ma, Y., Manocha, D., & Wang, W. (2018). Autorvo: Local navigation with dynamic constraints in dense heterogeneous traffic. arXiv preprint arXiv:1804.02915.
Ozbay, K., Yang, H., Bartin, B., & Mudigonda, S. (2008). Derivation and validation of new simulation-based surrogate safety measure. Transportation research record, 2083(1), 105-113.
SAE. (2014). Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems. SAE Standard J, 3016, 1-16.
Saffarzadeh, M., Nadimi, N., Naseralavi, S., & Mamdoohi, A. R. (2013). A general formulation for time-to-collision safety indicator. In Proceedings of the Institution of Civil Engineers-Transport, 294-304.
Sun, L., Zhan, W., & Tomizuka, M. (2018). Probabilistic prediction of interactive driving behavior via hierarchical inverse reinforcement learning. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 2111-2117.
Sun, Z. L., Wang, X. K., & Zai, S. X. (2011). Research on collision avoidance method of car anti-head-and-rear based on safe distance model. In Advanced Materials Research, 4435-4440.
Trautman, P., & Krause, A. (2010). Unfreezing the robot: Navigation in dense, interacting crowds. In 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems, 797-803.
Van Den Berg, J., Guy, S. J., Lin, M., & Manocha, D. (2011). Reciprocal n-body collision avoidance Robotics research (pp. 3-19): Springer.
Van den Berg, J., Lin, M., & Manocha, D. (2008). Reciprocal velocity obstacles for real-time multi-agent navigation. In 2008 IEEE International Conference on Robotics and Automation, 1928-1935.
Wang, C., Fu, R., Zhang, Q., Guo, Y., & Yuan, W. (2015). Research on parameter TTC characteristics of lane change warning system. China Journal of Highway and Transport, 28(8), 91-107.
Xin, L., Wang, P., Chan, C.-Y., Chen, J., Li, S. E., & Cheng, B. (2018). Intention-aware long horizon trajectory prediction of surrounding vehicles using dual lstm networks. In 2018 21st International Conference on Intelligent Transportation Systems (ITSC), 1441-1446.
Yamaguchi, K., Berg, A. C., Ortiz, L. E., & Berg, T. L. (2011). Who are you with and where are you going? In CVPR 2011, 1345-1352.
Young, C.-P., Chang, B. R., Lin, J.-J., & Fang, R.-Y. (2008). Cooperative collision warning based highway vehicle accident reconstruction. In 2008 Eighth International Conference on Intelligent Systems Design and Applications, 561-565.
Yu, G., Tan, D., Tian, H., & Lv, C. (2015). Warning/brake algorithm based on time of longitudinal collision avoidance. Journal of Henan University of Science & Technology (Natural Science)(2), 9.
Zhao, Z.-Q., Zheng, P., Xu, S.-t., & Wu, X. (2019). Object detection with deep learning: A review. IEEE transactions on neural networks and learning systems, 30(11), 3212-3232.

刘庆华, 邱修林, 谢礼猛, 王骏骅, & 方守恩. (2017). 基于行驶车速的车辆防撞时间预警算法. Transactions of the Chinese Society of Agricultural Engineering, 33(12).
楊汶諺. (2016). 用以預測車輛行進方向的十字路口車行軌跡建模與歸類. 清華大學資訊工程學系所學位論文, 1-35.

交通部高速公路局. (民108年11月14日). 交通安全資訊. 取自: https://www.freeway.gov.tw/Publish.aspx?cnid=516&p=2230
指導教授 薛義誠 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明