參考文獻 |
[1] I. J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio, “Generative adversarial nets,” in Proc. of Neural Information Processing Systems, Quebec, Canada, Dec.8-15, 2014, pp.2672-2680.
[2] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation learning with deep convolutional generative adversarial networks,” arXiv:1511.06434.
[3] M. Mirza and S. Osindero, “Conditional generative adversarial nets,” arXiv:1411.1784.
[4] P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-toimage translation with conditional adversarial networks,” arXiv:1611.07004v3.
[5] A. B. L. Larsen, S. K. Sønderby, H. Larochelle, and O. Winther, “Autoencoding beyond pixels using a learned similarity metric,” arXiv:1512.09300.
[6] C.-Y. Liou, W.-C. Cheng, J.-W. Liou, and, D.-R. Liou, "Autoencoder for words,“ Neurocomputing, vol.139, pp.84-96, Sep. 2014.
[7] D. P. Kingma and M. Welling, “Auto-encoding variational Bayes,” arXiv:1312.6114.
[8] J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired image-to-image translation using cycle-consistent adversarial networks,” arXiv:1703.10593v6.
[9] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of gans for improved quality, stability, and variation,” arXiv:1710.10196.
[10] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for generative adversarial networks,” arXiv:1812.04948.
[11] N. V. Chawla, K. W. Bowyer, L. O. Hall, and W. P. Kegelmeyer, “SMOTE: synthetic minority over-sampling technique,” arXiv:1106.1813.
[12] T.-Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for dense object detection,” arXiv:1708.02002.
[13] A. Krizhevsky, I. Sutskever, and G. Hinton, “Imagenet classification with deep convolutional neural networks,” in Proc. of Neural Information Processing Systems (NIPS), Lake Tahoe, NV, Dec.3-8, 2012, pp.1097-1105.
[14] M. D. Zeiler, D. Krishnan, G. W. Taylor, and R. Fergus, “Deconvolutional networks,” in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, San Francisco, CA, Jun.13-18, 2010, pp.2528-2535.
[15] N. Chigozie Enyinna, I. Winifred, G. Anthony, and M. Stephen, “Activation functions: comparison of trends in practice and research for deep learning,” arXiv:1811.03378.
[16] V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltzmann machines,” in Proc. of ICML Conf. , Haifa, Israel, Jun.21-24, 2010, pp.807-814.
[17] M. Andrew L, H. Awni Y, and N. Andrew Y, “Rectifier nonlinearities improve neural network acoustic models,” in Proc. of ICML Conf. , Atlanta, GA, Jun.16-21, 2013, pp.1-6.
[18] S. Ioffe and C. Szegedy, “Batch normalization: accelerating deep network training by reducing internal covariate shift,” arXiv:1502.03167.
[19] X. Huang and S. Belongie, “Arbitrary style transfer in real-time with adaptive instance normalization,” arXiv:1703.06868v2.
[20] V. Dumoulin, J. Shlens, and M. Kudlur, “A learned representation for artistic style,” arXiv:1610.07629v5.
[21] G. Ghiasi, H. Lee, M. Kudlur, V. Dumoulin, and J. Shlens, “Exploring the structure of a real-time, arbitrary neural artistic stylization network,” arXiv:1705.06830v2.
[22] D. Ulyanov and A. Vedaldi, “Instance normalization: the missing ingredient for fast stylization,” arXiv:1607.08022v3.
[23] R. Zhang, “Making convolutional networks shift-invariant again,” arXiv:1904.11486v2.
[24] Y. Choi, M. Choi, M. Kim, J.-W. Ha, S. Kim, and J. Choo, “StarGAN: Unified generative adversarial networks for multi-domain image-to-image translation,” arXiv:1711.09020v3.
[25] V. Kazemi and J. Sullivan, "One millisecond face alignmentwith an ensemble of regression trees," in Proc. of the IEEE Conference on Computer Vision and Pattern Recognition, Columbus, Ohio, Jun.24-27, 2014, pp.1867-1874.
[26] T. Karras, S. Laine, M. Aittala, J. Hellsten, J. Lehtinen, and T. Aila, “Analyzing and improving the image quality of StyleGAN,” arXiv:1912.04958v2.
[27] T. Salimans and D.-P. Kingma, “Weight normalization: A simple reparameterization to accelerate training of deep neural networks,” arXiv:1602.07868v3.
[28] A. Karnewar, O. Wang, and R.-S. Iyengar, “MSG-GAN: multi-scale gradient GAN for stable image synthesis,” arXiv:1903.06048v3.
[29] O. Ronneberger, P. Fischer, and T. Brox, "UNet: Convolutional networks for biomedical image segmentation," in Proc. Medical Image Computing and ComputerAssisted Intervention (MICCAI), Munich, Germany, Oct.5-9, 2015, pp.234-241.
[30] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in Proc. of IEEE Conf. on Computer Vision and Pattern Recognition, Las Vegas, NV, Jun.27-30, 2016, pp.770-778.
[31] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and A. Courville, “Improved training of Wasserstein GANs,” arXiv:1704.00028.
[32] T. Miyato, T. Kataoka, M. Koyama, and Y. Yoshida, “Spectral normalization for generative adversarial networks,” arXiv:1802.05957.
[33] H. Zhang, I. Goodfellow, D. Metaxas, and A. Odena, “Self-attention generative adversarial networks,” arXiv:1805.08318.
[34] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A.-N. Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,” arXiv:1706.03762v5.
[35] I. Sutskever, O. Vinyals, and Q.-V. Le, “Sequence to sequence learning with neural networks,” arXiv:1409.3215v3.
[36] Y. Xia, D. He, T. Qin, L. Wang, N. Yu, T.-Y. Liu, and W.-Y. Ma, “Dual learning for machine translation,” arXiv:1611.00179v1.
[37] N. Kalchbrenner, E. Grefenstette, and P. Blunsom, “A convolutional neural network for modelling sentences,” arXiv:1404.2188v1.
[38] K. Cho, B. v. Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and Y. Bengio, “Learning phrase representations using RNN Encoder-Decoder for statistical machine translation,” arXiv:1406.1078v3.
[39] H. Mi, Z. Wang, and A. Ittycheriah, “Vocabulary manipulation for Neural machine translation,” arXiv:1605.03209v1.
[40] F. Hill, K. Cho, S. Jean, C. Devin, and Y. Bengio, “Embedding word similarity with neural machine translation,” arXiv:1412.6448v4. |