博碩士論文 107522017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.144.89.197
姓名 劉子睿(Tzu-Jui liu)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於支援向量的特徵線轉換於高光譜影像辨識
(Feature Line Embedding based on Support Vector for Hyperspectral Image Classification)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-7-31以後開放)
摘要(中) 在本研究中,提出了一種基於支援向量機(SVM)的新穎特徵線轉換進行資料降維,稱之為SVMFLE,並將其用於改進生成對抗網絡(GAN)在高光譜圖像(HSI)分類中的效果。GAN在許多應用中都成功展示了其強大的分類能力。然而,在GAN方法中,由於傳統的主成分分析(PCA)預處理步驟乃是基於線性轉換,無法有效地獲取非線性資訊,因此我們提出了SVMFLE此一非線性,且基於支援向量機的特徵線轉換來改善此一問題。我們提出的SVMFLE降維方法主要分成兩個階段執行。在第一個SVM階段,提取支援向量以獲得部分的組間分散度矩陣。然後,在第二個敏感性分析階段,使用最近鄰居(NN)分類器找到支援向量與原資料的組間分散度矩陣的最佳比例,然後最後獲得降維的特徵空間。由於所獲得的特徵空間比一般特徵空間更具代表性和區別性,因此可以提高GAN在HSI分類中的效果。我們透過三個標準數據集與具代表性的GAN方法進行比較以驗證SVMFLE結合GAN方法的有效性。根據實驗結果,我們所提出的SVMFLE結合GAN方法的分類效果優於原GAN,並且在Salinas,Indian Pines和Pavia University數據集中其準確度分別為96.26%,86.61%和89.22%。
摘要(英) In this study, a novel feature line embedding based on support vector machine (SVM), termed SVMFLE, is proposed for dimension reduction (DR) and applied to improve the performance of generative adversarial networks (GAN) in hyperspectral image (HSI) classification. The GAN has successfully shown its powerful discriminative capability in many applications. However, since the traditional linear-based principle component analysis (PCA) pre-processing step in GAN cannot effectively obtain the nonlinear information, the feature line embedding based on support vector machine method, SVMFLE was proposed to alleviate this problem. The proposed SVMFLE dimension reduction scheme was performed through two stages. In the first SVM stage, the support vectors were extracted for obtaining a part of between-class scatters. Then in the second sensitivity analysis stage, the nearest neighbor (NN) classifier was used to find a suitable combination of the between-class scatters, and then obtain the final dimension reduced feature space. Since the obtained feature space was much more representative and discriminative than the conventional ones, the performance of GAN in HSI classification could be improved. The effectiveness of the proposed SVMFLE with GAN scheme was measured by comparing with the state-of-the-art work on three benchmark datasets. According to the experimental results: the performance of the proposed SVMFLE with GAN is better than the state-of-the-art, and got the accuracy of 96.26%, 86.61%, and 89.22% in Salinas, Indian Pines, and Pavia University datasets, respectively.
關鍵字(中) ★ 高光譜影像 關鍵字(英) ★ hyperspectral Image
論文目次 摘要 i
Abstract ii
誌謝 iii
Content iv
Chapter 1 Introduction 1
Chapter 2 Related Works 6
2.1. Feature Line Embedding (FLE) 6
2.2. Support Vector Machine (SVM) 8
2.3. Generative Adversarial Networks (GAN) 9
Chapter 3 Proposed Method 11
3.1 The Framework of Proposed SVMFLE Method 11
3.2 The SVMFLE-GAN Architecture 12
3.3 Algorithm 14
Chapter 4 Experimental Results 16
4.1. Description of Data Sets 16
4.2 Measure Metric 20
4.3. Sensitivity Analysis of Between-Class Scatter Parameter 20
4.4. Classification Results using Nearest Neighbor 24
4.5 Classification Results using SVM 25
4.6 Classification Results using GAN 26
Chapter 5 Conclusions 30
Reference 31
參考文獻 [1] Chen, Y.S.; Huang, L.B.; Lin, Z.; Yokoya, N.T.; Jia, X.P. Fine-Grained Classification of Hyperspectral Imagery Based on Deep Learning. Remote Sensing. 2019, 11, 2690.
[2] Gualtieri, J.A.; Cromp, R.F. Support vector machines for hyperspectral remote sensing classification. In Proceedings of the 27th AIPR Workshop: Advances in Computer-Assisted Recognition, Washington, DC, USA, 14–16 October 1998; pp. 221–232.
[3] Melgani, F.; Bruzzone, L. Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans. Geosci. Remote Sens. 2004, 42, 1778–1790.
[4] Chen, Y.N.; Hsieh, C.T.; Wen, M.G.; Han, C.C.; Fan, K.C. A dimension reduction framework for HIS classification using fuzzy and kernel NFLE transformation. Remote Sensing. 2015, 7, 14292–14326.
[5] Chang, Y.L.; Liu, J.N.; Han, C.C.; Chen, Y.N. Hyperspectral Image Classification Using Nearest Feature Line Embedding Approach. IEEE Trans. Geosci. Remote Sens. 2014, 52, 278–287.
[6] Ham, J.; Chen, Y.; Crawford, M.M.; Ghosh, J. Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans. Geosci. Remote Sens. 2005, 43, 492–501.
[7] Tu, S.T.; Chen, J.Y.; Yang, W.; Sun, H. Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification. IEEE Trans. Geosci. Remote Sens. 2011, 50, 170–179.
[8] Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1185–1198.
[9] Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification using dictionary-based sparse representation. IEEE Trans. Geosci. Remote Sens. 2011, 49, 3973–3985.
[10] Zhu, L.; Chen, Y.; Ghamisi, P.; Benediktsson, J. A. Generative adversarial Networks for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 5046–5063.
[11] Turk, M.; Pentland, A.P. Face recognition using eigenfaces. In Proceedings of the 1991 Proceedings CVPR ’91. IEEE Computer Society Conference on Computer Vision and Pattern Recognition, Maui, HI, USA, 3–6 June 1991; pp. 586–591.
[12] Belhumeur, P.N.; Hespanha, J.P.; Kriegman, D.J. Eigenfaces vs. Fisherfaces: Recognition using class specific linear projection. IEEE Trans. Pattern Anal. Mach. Intell. 1997, 19, 711–720.
[13] Cevikalp, H.; Neamtu, M.; Wikes, M.; Barkana, A. Discriminative common vectors for face recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 4–13.
[14] He, X.; Yan, S.; Ho, Y.; Niyogi, P.; Zhang, H.J. Face recognition using Laplacianfaces. IEEE Trans. Pattern Anal. Mach. Intell. 2005, 27, 328–340.
[15] Tu, S.T.; Chen, J.Y.; Yang, W.; Sun, H. Laplacian eigenmaps-based polarimetric dimensionality reduction for SAR image classification. IEEE Trans. Geosci. Remote Sens. 2011, 50, 170–179.
[16] Wang, Z.; He, B. Locality preserving projections algorithm for hyperspectral image dimensionality reduction. In Proceedings of the 2011 19th International Conference on Geoinformatics, Shanghai, China, 24–26 June 2011; pp. 1–4.
[17] Kim, D.H.; Finkel, L.H. Hyperspectral image processing using locally linear embedding. In Proceedings of the 1st International IEEE EMBS Conference on Neural Engineering, Italy, 20–22 March 2003; pp. 316–319.
[18] Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving discriminant analysis in kernel-induced feature spaces for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2011, 8, 894–898.
[19] Li, W.; Prasad, S.; Fowler, J.E.; Bruce, L.M. Locality-preserving dimensionality reduction and classification for hyperspectral image analysis. IEEE Trans. Geosci. Remote Sens. 2012, 50, 1185–1198.
[20] Luo, R.B.; Liao, W.Z.; Pi, Y.G. Discriminative supervised neighborhood preserving embedding feature extraction for hyperspectral-image classification. Telkomnika 2012, 10, 1051–1056.
[21] Zhang, L.; Zhang, Q.; Zhang, L.; Tao, D.; Huang, X.; Du, B. Ensemble manifold regularized sparse low-rank approximation for multi-view feature embedding. Pattern Recognit. 2015, 48, 3102–3112.
[22] Boots, B.; Gordon, G.J. Two-manifold problems with applications to nonlinear system Identification. In Proceedings of the 29th International Conference on Machine Learning, Edinburgh, UK, 26 June–1 July 2012.
[23] Odone, F.; Barla, A.; Verri, A. Building kernels from binary strings for image matching. IEEE Trans. Image Process. 2005, 14, 169–180.
[24] Scholkopf, B.; Smola, A.; Muller, K.R. Nonlinear component analysis as a kernel eigenvalue problem. Neural Comput. 1998, 10, 1299–1319.
[25] Lin, Y.Y.; Liu, T.L.; Fuh, C.S. Multiple kernel learning for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2011, 33, 1147–1160.
[26] Nazarpour, A.; Adibi, P. Two-stage multiple kernel learning for supervised dimensionality reduction. Pattern Recognit. 2015, 48, 1854–1862.
[27] Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized composite kernel framework for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829.
[28] Chen, Y.; Nasrabadi, N.M.; Tran, T.D. Hyperspectral image classification via kernel sparse representation. IEEE Trans. Geosci. Remote Sens. 2013, 51, 217–231.

[29] Zhang, L.; Zhang, L.; Tao, D.; Huang, X. On combining multiple features for hyperspectral remote sensing image classification. IEEE Trans. Geosci. Remote Sens. 2012, 50, 879–893.
[30] Liu, B.; Yu, X.; Zhang P; Yu, A; Fu, Q; Wei, X. Supervised deep feature extraction for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing. 2018, 56, 1909–1921.
[31] He, N; Paoletti, M. E; Haut, J. M.; Fang, L.; Li, S.; Plaza, A.; Plaza, J. Feature extraction with multiscale covariance maps for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing. 2019, 57, 755–769.
[32] Hu, W.; Li, H.; Pan, L.; Li, W.; Tao, R.; Du, Q. Spatial-Spectral Feature Extraction via Deep ConvLSTM Neural Networks for Hyperspectral Image Classification. IEEE Transactions on Geoscience and Remote Sensing, 58(6), 4237-4250.
[33] Deng, B.; Jia, S.; Shi, D. Deep metric learning-based feature embedding for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing. 2020, 58, 1422–1435.
[34] Deng, C.; Xue, Y.; Liu, X.; Li, C.; Tao, D. Active transfer learning network: a unified deep joint spectral-spatial feature learning model for hyperspectral image classification. IEEE Transactions on Geoscience and Remote Sensing. 2019, 57, 1741–1754.
[35] Ben-Hur, A.; Horn, D.; Siegelmann, H. T.; Vapnik, V. Support Vector Clustering. Journal of Machine Learning Research. 2001, 2, 125–137.
[36] Yan, S.; Xu, D.; Zhang, B.; Zhang, H.J.; Yang, Q.; Lin, S. Graph embedding and extensions: a framework for dimensionality reduction. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 40–51.
指導教授 范國清 陳映濃(Kuo-Chin Fan Ying-Nong Chen) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明