博碩士論文 107522078 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:11 、訪客IP:3.149.244.45
姓名 高珮涵(Pei-Han Kao)  查詢紙本館藏   畢業系所 資訊工程學系
論文名稱 基於雙路徑網路之影像隱寫分析
(Steganalysis in Digital Images based on Dual Path Networks)
相關論文
★ 基於QT之跨平台無線心率分析系統實現★ 網路電話之額外訊息傳輸機制
★ 針對與運動比賽精彩畫面相關串場效果之偵測★ 植基於向量量化之視訊/影像內容驗證技術
★ 植基於串場效果偵測與內容分析之棒球比賽精華擷取系統★ 以視覺特徵擷取為基礎之影像視訊內容認證技術
★ 使用動態背景補償以偵測與追蹤移動監控畫面之前景物★ 應用於H.264/AVC視訊內容認證之適應式數位浮水印
★ 棒球比賽精華片段擷取分類系統★ 利用H.264/AVC特徵之多攝影機即時追蹤系統
★ 利用隱式型態模式之高速公路前車偵測機制★ 基於時間域與空間域特徵擷取之影片複製偵測機制
★ 結合數位浮水印與興趣區域位元率控制之車行視訊編碼★ 應用於數位智權管理之H.264/AVC視訊加解密暨數位浮水印機制
★ 基於文字與主播偵測之新聞視訊分析系統★ 植基於數位浮水印之H.264/AVC視訊內容驗證機制
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 隱寫術(Steganography)是將若干影像甚至音視訊等資料做為載體,再把大量機密資訊嵌入於其中以達成秘密通訊的效果,而隱寫分析(Steganalysis)則是偵測可能的載體以確認秘密資訊是否藏於其中。關於隱寫分析,以往多採用人工設計之特徵擷取,但需要耗費較多人力以及依賴相關研究經驗,近期則以深度學習技術為主,但也多使用指定的濾波器對待測資料進行人工預處理,無法達成完全的自動學習。本研究主要為影像隱寫分析,使用雙路徑卷積神經網路(Dual Path Networks, DPN)達成端到端(end-to-end)架構,以ResNet 擷取特徵,再以 DenseNet 提取更深層且細微的特徵,結合兩者的優勢,組成權值共享的雙通道區塊(DPN blocks),並採用 ResNeXt 的分組卷積降低計算量,使用不同參數的雙通道區塊組合以利隱寫分析。SRNet 為目前隱寫分析模型中效果較為優異者,當中採用了 ResNet 作為特徵擷取,我們將其替換為雙通道區塊進行比較,偵測準確度有所提升,也證實了 DPN 有助於隱寫特徵的擷取。接著我們將整體架構改為以 DPN 為主,與以往的隱寫分析架構不同,並與這些架構比較以彰顯所提出架構的可行性。

關鍵字:隱寫分析、隱寫術、深度學習、卷積神經網路。
摘要(英) Steganography is a technique to embed a large amount of information in such carriers as images, audio, videos and even texts to achieve effective secret communications. On the other hand, steganalysis is the adversarial technique
aimed at determining whether the investigated carriers contain hidden information. In the field of steganalysis, heuristic features were usually adopted. Recently deep
learning techniques are often employed but most existing methods still use certain high-pass filters to apply pre-processing. In this research, we focus on image
steganalysis and adopt the dual path networks (DPN) to achieve an end-to-end architecture. The proposed scheme uses ResNet to extract features, and then employs DenseNet to extract deeper and smaller features. It combines the advantages of both networks to form a DPN blocks with shared weights. The scheme uses the group convolution to reduce the amount of computation. Finally,
dual path blocks with different parameters are tested to build suitable steganalysis architectures. SRNet, which uses ResNet, performs quite well in image steganalysis. We first replace its ResNet blocks with DPN blocks for comparison. The detection accuracy is improved and confirms that the structure using DPN is helpful to steganalysis. We then use DPN blocks to build our architecture and then compare the performance with the existing steganalysis architectures. Finally, we use the ALASKA II dataset to verify the feasibility of the proposed scheme.
Index Terms - Steganalysis, steganography, deep learning, convolutional neural networks.
關鍵字(中) ★ 隱寫分析
★ 隱寫術
★ 深度學習
★ 卷積神經網路
關鍵字(英) ★ Steganalysis
★ steganography
★ deep learning
★ convolutional neural networks
論文目次 論文摘要 IV
Abstract V
目錄 VI
附圖目錄 IX
表格目錄 XI
第一章 緒論 1
1.1 研究動機 1
1.2 研究貢獻 2
1.3論文架構 3
第二章 隱寫分析相關研究 4
2.1 隱寫術 4
2.2 隱寫分析 6
2.2.1 傳統隱寫分析 7
2.2.2 基於深度學習之隱寫分析 9
第三章 提出方法 13
3.1 相關網路介紹 13
3.1.1 Inception-ResNet 13
3.1.2 Dual Path Networks 15
3.2改進過去隱寫分析架構 19
3.2.1 近期表現較好之隱寫分析模型-SRNet 19
3.2.2 採用過去架構之改良 21
3.2.3 下採樣方法比較 23
3.3 主要架構 25
3.3.2 Inception-ResNet 25
3.3.3 DPN blocks 28
3.3.4激活函數 35
3.3.5 使用DPN之優勢 38
3.3.6與過去隱寫分析之比較 40
第四章 實驗結果 41
4.1 開發環境 41
4.2 資料集介紹 42
4.3 評估方法 44
4.4實驗結果 45
4.5 額外檢測ALASK II訓練資料 47
4.5.1 與我們原始資料比較 49
4.5.2檢測方法與比較 50
第五章 結論與未來展望 53
參考文獻 54
參考文獻 [1]Yunpeng Chen, et al. “Dual Path Networks”, arXiv preprint arXiv:1707.01083, 2017.
[2]Kaiming He, et al. “Deep residual learning for image recognition”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2016.
[3]Gao Huang, et al. “Densely Connected Convolutional Networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.
[4]Mehdi Boroumand, et al. “Deep Residual Network for Steganalysis of Digital Images.”, Proceedings of the IEEE Transactions on Information Forensics and Security. 2019.
[5]S. M. Masud Karim, et al., “A new approach for LSB based image steganography using secret key”, 14th International Conference on Computer and Information Technology, 2011.
[6]D.G. Lowe, “Object recognition from local scale-invariant features,” Proceedings of the Seventh IEEE International Conference on Computer Vision: 1150–1157. 1999.
[7]Bin Li, et al., “A new cost function for spatial image steganography”, Proceedings of the IEEE International Conference on Image Processing (ICIP), 2014.
[8]Vojtěch Holub and Jessica Fridrich, “Designing steganographic distortion using directional filters”, Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), 2012.
[9]Vojtech Holub, et al., “Universal distortion function for steganography in an arbitrary domain”, EURASIP Journal on Information Security, vol.2014, no. 1, Dec. 2014.
[10]Linjie Guo, et al., “An efficient JPEG steganographic scheme using uniform embedding”, Proceedings of the IEEE International Workshop on Information Forensics and Security (WIFS), 2012.
[11]Chang Wang and Jiangqun Ni, “An efficient JPEG steganographic scheme based on the block entropy of DCT coefficients”, Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, 2012.
[12]Corinna Cortes and Vladimir Vapnik, “Support-vector networks”, Machine Learning. 20 (3): 273–297., 1995.
[13]Jan Kodovsky, at el., “Ensemble Classifiers for Steganalysis of Digital Media.”, Proceedings of the IEEE Transactions on Information Forensics and Security, vol.7, 2012.
[14]Jessica Fridrich, at el., “Breaking HUGO—The Process Discovery.”, Information Hiding-international Conference, pp. 85-101, 2011.
[15]Jan Kodovský and Jessica Fridrich, “Steganalysis in High Dimensions: Fusing Classifiers Built on Random Subspaces.”, Proceedings of SPIE—The International Society for Optical Engineering, pp. 181-197, 2011
[16] Jessica Fridrich and Jan Kodovsky, “Rich Models for Steganalysis of Digital Images.”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2012
[17]Vojtech Holub and Jessica Fridrich, “Random Projections of Residuals for Digital Image Steganalysis.”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2013
[18]Tomáš Pevny et al., “Steganalysis by subtractive pixel adjacency matrix”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2010.
[19]Vojtech Holub and Jessica Fridrich, “Random projections of residuals for digital image steganalysis.”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2013.
[20]Tomas Pevny and Jessica Fridrich, “Merging Markov and DCT features for multi-class JPEG steganalysis.”, Security, Steganography, and Watermarking of Multimedia Contents IX., 2007.
[21]Jan Kodovský and Jessica Fridrich, “Steganalysis of JPEG images using rich models”, Media Watermarking, Security, and Forensics, 2012.
[22]Vojtěch Holub and Jessica Fridrich, “Low-Complexity Features for JPEG Steganalysis Using Undecimated DCT.”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2015.
[23]Vojtěch Holub and Jessica Fridrich, “Phase-aware projection model for steganalysis of JPEG images.”, Media Watermarking, Security, and Forensics, 2015.
[24]Xiaofeng Song, et al., “Steganalysis of Adaptive JPEG Steganography Using 2D Gabor Filters”, Proceedings of the 3rd ACM Workshop on Information Hiding and Multimedia Security, 2015.
[25]Tomas Denemark, et al., “Selection-channel-aware rich model for Steganalysis of digital images”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2014.
[26]Weixuan Tang, et al., “Adaptive steganalysis against WOW embedding algorithm.”, Proceedings of the 2nd ACM workshop on Information hiding and multimedia security, pp. 91-96, 2014.
[27]Yinlong Qian, et al., “Deep learning for steganalysis via convolutional neural networks.”, Media Watermarking, Security, and Forensics 2015, 2015.
[28]Guanshuo Xu, et al., “Structural Design of Convolutional Neural Networks for Steganalysis.”, Proceedings of the IEEE Signal Processing Letters, 2016.
[29]Jian Ye, et al., “Deep Learning Hierarchical Representations for Image Steganalysis.”, Proceedings of the IEEE Transactions on Information Forensics and Security, 2017.
[30]Guanshuo Xu, “Deep Convolutional Neural Network to Detect J-UNIWARD.”, Proceedings of the 5th ACM Workshop on Information Hiding and Multimedia Security, 2017
[31]Mehdi Yedroudj, et al., “Yedrouj-Net: An efficient CNN for spatial steganalysis.”, International Conference on Acoustics, Speech and Signal Processing, 2018.
[32]Ru Zhang, et al., “Efficient feature learning and multi-size image steganalysis based on CNN.”, arXiv preprint arXiv:1807.11428, 2018.
[33]Christian Szegedy, et al., “Going Deeper With Convolutions.”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2015.
[34]Christian Szegedy, et al., “Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning.”, AAAI Publications, Thirty-First AAAI Conference on Artificial Intelligence, 2017.
[35]Rohollah Soltani and Hui Jiang, “Higher order recurrent neural networks”. arXiv preprint arXiv:1605.00064, 2016.
[36]Saining Xie, et al., “Aggregated Residual Transformations for Deep Neural Networks.”, arXiv:1611.05431v2, 2017.
[37]Mo Chen, et al., “JPEG-phaseaware convolutional neural network for steganalysis of JPEG images.”, in Proc. 5th ACM Workshop Inf. Hiding Multimedia Secur., 2017.
[38]Tomas Denemark, et al., “Selection-channel-aware rich model for Steganalysis of digital images.”, 2014 IEEE International Workshop on Information Forensics and Security (WIFS), 2014.
[39]Tomáš Denemark Denemark, et al., “Steganalysis Features for Content-Adaptive JPEG Steganography.”, IEEE Transactions on Information Forensics and Security, 2016.
[40]Diganta Misra, “Mish: A Self Regularized Non-Monotonic Neural Activation Function.”, arXiv:1908.08681, 2019.
[41] Patrick Bas, et al., “‘Break our steganographic system’: The ins and outs of organizing BOSS”, Proc. 13th Int. Conf. Inf. Hiding in Lecture Notes in Computer Science, vol. 6958, pp. 59–70., 2011
[42]Prajit Ramachandran, et al., “Searching for Activation Functions”, arXiv:1710.05941, 2017.
[43]Diederik P. Kingma and Jimmy Ba, “Adam: A method for stochastic optimization”, arXiv:1412.6980, 2014.
[44]Kaiming He, et al., “Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification”, Proceedings of the IEEE International Conference on Computer Vision (ICCV), 2015.
[45]Dan Hendryck and Kevin Gimpel, “GAUSSIAN ERROR LINEAR UNITS (GELUS)”, arXiv:1606.08415v4, 2020.
[46]P. Bas and T. Furon., “BOWS-2.”, http://bows2.ec-lille.fr, Jul. 2007.
[47]https://alaska.utt.fr/#timeline
[48]Rémi Cogranne, et al., “Steganography by Minimizing Statistical Detectability: The cases of JPEG and Color Images.”, ACM Information Hiding and MultiMedia Security, Jun. 2020.
[49]Linjie Guo, et al., “Using statistical image model for JPEG steganography: Uniform embedding revisited.”, IEEE Transactions on Information Forensics and Security, vol. 10, no. 12, pp. 2669–2680, 2015.
指導教授 蘇柏齊(Po-Chyi Su) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明