博碩士論文 995401005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.15.144.162
姓名 葉宗皇(Chung-Huang Yeh)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 用於改進測試的時變製造過程的疊代估計
(Iterative Estimation of Time-Variant Manufacturing Processes for Test Improvement)
相關論文
★ E2T-iSEE:應用於事件與情感狀態轉移排程器之編輯★ “偶”:具情感之球型機器人
★ 陣列區塊電容產生器於製程設計套件之評量★ 應用於數位家庭整合計畫影像傳輸子系統之設計考量與實現
★ LED 背光模組靜電放電路徑★ 電阻串連式連續參考值產生器於製程設計套件之評量
★ 短篇故事分類與敘述★ 延伸考慮製程參數相關性之類比電路階層式變異數分析器
★ 以電子電路觀點對田口式惠斯登電橋模擬實例的再分析★ 應用於交換電容ΔΣ調變電路之電容排列良率自動化擺置平台
★ 陣列MiM電容的自動化佈局★ 陣列MiM電容的平衡接點之通道繞線法
★ 氣象資訊達人★ 嵌入式WHDVI多核心Forth微控制器之設計
★ 應用於電容陣列區塊之維持比值良率的通道繞線法★ 使用於矽穿孔耦合分析之垂直十字鏈基板結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (全文檔遺失)
請聯絡國立中央大學圖書館資訊系統組 TEL:(03)422-7151轉57422,或E-mail聯絡
摘要(中) 這項研究以統計方法為基礎,開發一種IC測試模型(DITM),用來評估IC產品的測試良率和品質。為了清楚地表示製造和測試參數,我們將製造能力(DUT電路特性參數)以常態分佈為基礎,然後依次表達與製造能力和測試能力相關的其他參數的標準化參數。最後,我們使用品質-良率圖來了解可製造性參數與可測試性參數之間的相互作用。由於無法得知IC產品的未來分佈,因此我們使用當前產品的電氣特性和產品製造技術來估算未來的產品分佈趨勢。我們比較了Miao–Dalal,DITM和ITRS預測的未來不同的Yt (Test Yield)值。在這三種不同的估計方法之間,很明顯,由以上模擬結果可以清楚了解,DITM可以準確有效地預測未來測試良率Yt。由於測試技術的開發改進速度相當緩慢,因此對於testing house來說,使用現有測試儀器和適當的測試方法,分類出高品質的優質IC已成為一個更大的挑戰。為了提高產品測試良率與品質,我們提出了幾種重複測試的新方案(多重測試方法,重複測試方法和不平衡測試方法),以獲得具有所需產品品質的最大測試良率,這是通過應用《國際半導體技術路線圖》(ITRS)表中的重複測試方法來完成的。最後,通過將重複測試方法應用於2015年ITRS路線圖中的預估的表格中,可以清楚地看出,與傳統測試方法相比,重複測試確實可以將測試結果提高30%以上或更多。
摘要(英) This study aims to develop an IC testing model (DITM) based on a statistical simulation method to evaluate the test yield and quality of IC products. In order to express the manufacturing and testing parameters clearly, we will take the manufacturability (DUT circuit characteristic parameters) into a standard normal distribution as the basis, and then successively express the standardized parameters of other parameters relative to manufacturability and testability. Finally, we use the quality-yield plot to demonstrate the interaction between the manufacturability parameters and the testability parameters. Since the future distribution of IC products cannot be known, we use current product electrical characteristics and product manufacturing technology to estimate future product distribution trends. Hence, we compared the different future test yield (Yt) values as predicted by Miao–Dalal Yield, DITM, and by ITRS. Between the three different estimation methods, it is clear that the above-simulated result indicated that DITM could accurately and effectively predict future test yield (Yt). Since developmental improvements for testing technologies has been slow, it has become a greater challenge for a supplier to determine the use of existing instruments and tools to achieve quality products with zero defects. To improve product quality, several new schemes of duplicate tests (Multiple test method, Repeated test method, and Unbalanced test method) have been proposed to obtain a maximum yield with the desired qualities. This has been done by applying the duplicate testing methodologies described in Table of the International Technology Roadmap for Semiconductors (ITRS). Finally, with the application of the Repeat test methodology to the table of the test protocol described in the 2015 ITRS Roadmap, it shows clearly that in comparison with the traditional test methodology, Repeat testing can indeed promote the result of test yield by 30% or more.
關鍵字(中) ★ 測試錯誤
★ 測試規格
★ 測試防護帶
★ 缺陷等級
關鍵字(英) ★ Test errors
★ test specification
★ guardband test
★ defect level
論文目次 Contents
摘要 ……………………………………………………………...……………… i
Abstract ………………………………………………………………...…………… ii
Acknowledgmments ………………………………………………………….……...…… iii
Contents …………………………………………………………………………...… iv
List of Figures ………………………………………………………………………...…… vii
List of Tables …………………………………………………………………...………… ix
Nomenclature ……………………………………………………...……………………… x
Chapter 1: Introduction……………………………………….……………………… 1
1-1 Motivation…………………………………………….…………………… 1
1-2 Research Goal………...…………………………………………………… 3
1-3 Research Methodology…………………………………………….……… 4
1-4 Contributions………………………………………………….…………… 5
1-5 Organization and Main Tasks…………………………………...………… 6
Chapter 2: Related Work 9
2-1 IC Test Concept…………………………………………………………… 9
2-2 Calculating the Manufacturing Yield……………………………………… 9
2-3 Predicting the Manufacturing Progress Variation of Future 13
Chapter 3: Testing Yield Estimation and Guardband Testing 16
3-1 A Test Evaluation Technique for VLSI Using………….………………… 16
3-2 Guardband Testing………………………………………………………… 16
3-3 Testing Yield Estimation……………………………..…………………… 18
3-4 Defect Level DL Estimation………………………….…………………… 20
3-5 Guardband test impacts on Yt and Qt……………………………...……… 23
3-6 The Effect of ATE Accuracy on the IC Test Yield and Product Quality…. 25
3-7 Sacrifice Some Test Yield for High Quality……..……………………..…. 27
Chapter 4: Quality–Yield Plot and Forecasting DUT Yield……...………………… 29
4-1 Standardization of manufacturing capability and test capability parameters………………………………………………………...…..…… 29
4-2 Quality–Yield Plot……………………………….……………...………… 31
4-3 Forecasting DUT Yield……………………………….…………………… 33
Chapter 5: A New Scheme of IC Testing………………………….………………… 35
5-1 Testers Lacking up to Date Testing Abilities…………...………………… 35
5-1-1 Use a VLSI tester with an annual improvement of 12% to test manufacturing technology that has an annual improvement of 4%........................................................................................…..……...…… 35
5-1-2 Use a VLSI tester with an annual improvement of 5% to test manufacturing technology that has an annual improvement of 4%........................................................................................…..……...…… 37
5-1-3 Use a VLSI tester with an annual improvement of 3% to test manufacturing technology that has an annual improvement of 4%........................................................................................…..……...…… 38
5-2 A New Scheme of Testing………………………………………………… 39
5-2-1 The First Method: Multiple Testing Scheme………………………..…… 41
5-2-2 High-Quality Goal……..………………….……………………….……… 43
5-2-3 Mltiple -Tests Applying to the ITRS Table for Guardbanding……….…… 45
5-3 The Second Method: A New Unbalanced Testing Scheme……………..… 47
5-3-1 Estimation of Unbalanced Testing………………………………………… 49
5-3-2 Unbalanced-Tests That Apply to Accuracy Requirement Data (300ppm) 51
5-3-3 Unbalanced-Tests That Apply to Accuracy Requirement Data (5ppm)…………………………………………………………...………… 53
5-4 The Third Method: Repeat Testing Scheme………………...…..………… 54
5-4-1 Different Test Methods Affect Test Yield and Test Quality.……..……… 56
5-4-2 By Applying the Repeat Test Methodology to the Table of TEST, ITRS 2015 (300ppm)…………………………………………………………... 58
5-4-3 Maintain 5ppm Quality in VLSI Test Using the Repeat-Test Method....… 60
5-4-4 Decision-Making Methods to Increase Company Profits………………… 62
5-4-5 Maximum Economic Benefits…………………………..………………… 64
Chapter 6: Conclusion……………...………………………………………………… 66
Future Work …………….…………………………………………………..…………… 68
References ……………………………………………………………………...……… 70
Appendix A.Manufacturing Yield Estimation…………………………………...…… 74
B.Testing Yield Estimation...………………………………………...…… 76
C.Defect Level Estimation…………………………………………...…… 78
D.A New Multiple Testing Scheme.………….……………………...…… 80
E.Standardization of Manufacturing and Testing Parameters...……...…… 82
Publication List ………………………………………………………………………… 84
A. Journal Papers……………………………………….………….……… 84
B. Conference Papers…………………………………...….……………… 84





List of Figures
Fig. 2-1 A manufacturing and test process with test errors………………….………..……….10
Fig. 2-2 The probability density function (normal one-dimensional distribution)……....……10
Fig. 2-3 A graph of the probability distribution vs chip delay time.. …………...…………….12
Fig. 2-4 Design specification impact on manufacturing yield. ……………………………….13
Fig. 3-1 An example of test specifications for IC testing. …………………………………….16
Fig. 3-2 The plots of probability density of a normal chip delay time. ……………………….17
Fig. 3-3 The traditional guardband test. …………………...………….…………….……..….19
Fig. 3-4 Traditional test . ……………………….………………….…………………..….22
Fig. 3-5 The influence of tester accuracy on test yield and test quality. ………….….……….23
Fig. 3-6 Influence of tester test specifications toward test yield and test quality…….……….25
Fig. 3-7 Test accuracy impact on test yield and test quality…………………………………..26
Fig. 3-8 The influence of tester specifications on test quality at the same defect level. .….….27
Fig. 4-1. Standardization of all evaluations………………………………….………..……….31
Fig. 4-2. Quality–yield plot (manufacturability index Cm = 2) ……………….……..……….31
Fig. 4-3 Quality–yield plot (manufacturability index Cm = ±0.5, ±1, 0, 2, and 3)……………33
Fig. 4-4 Three kinds of models to predict the future test yield (Yt)…………...………………34
Fig. 5-1 Testers lacking up to date testing abilities……….………………..…….……………36
Fig. 5-2 The 12% annual improvement of tester...………….…...……………....….…………36
Fig. 5-3 The 5% annual improvement of tester. …………………….………...………………37
Fig. 5-4 The 3% annual improvement of tester. ………………………………………………38
Fig. 5-5 Different developmental speeds for testing and manufacturing technologies. …..…..40
Fig. 5-6 The decision diagram for Multiple testing ( )…………..…………..……..………42
Fig. 5-7 The decision diagram for Multiple testing ( )…………………….………………42
Fig. 5-8 An example of how the yield is sacrificed to gain high quality products. ( ).……43
Fig. 5-9 Multiple tests for maximizing the yield without degrading quality…….……………45
Fig. 5-10 Comparison of traditional testing method and Multiple testing ……......…46
Fig. 5-11 The proposed decision diagram for Unbalanced Testing ( )………...……..……48
Fig. 5-12 Test methods that impact on Yt and Qt. ………………………….…..…..…………50
Fig. 5-13 The methods used to estimate the test yield in future products (300ppm). ...………53
Fig. 5-14 Applying the Unbalanced testing method to the ITRS Table (5ppm). ………..……54
Fig. 5-15 The decision diagram for Repeat testing ( ).………………………..……………55
Fig. 5-16 An example three test schemes to modifying the test specifications ( )…...……56
Fig. 5-17 An example of tester edge distribution and loss. ………………….………..………57
Fig. 5-18 Testing methods and decision-making affect the yield of testing (300ppm)…….…59
Fig. 5-19 Maintaining the desired 300 ppm DL as a function of time. ……………….………59
Fig. 5-20 Test methods change the test results (maintaining the desired 5 ppm DL)…………61
Fig. 5-21 Increase the yield of the test and maintain the required 5 ppm DL...…….…………61









List of Tables
Table 2-1 Different design specification versus different future product manufacturing yield……………………………………………………………………………………………13
Table 2-2 The International Technology Roadmap for Semiconductors 1999 and 2015 table…………………………………………………………………………..……….…….…15
Table 3-1 The value of test guardband impact on test result.…………………………………24
Table 3-2 Tester accuracy impact on Yt and Ym.………………………………………………26
Table 3-3 Tester specifications impact on Yt at the same defect level………………………...28
Table 4-1 Quality–yield plot (manufacturability indexes Cm = ±0.5, ±1, 0, 2, and 3).….……32
Table 4-2 Manufacturing progress parameter (α) affects the change of test yield (Yt)…….…34
Table 5-1 The use of 3, 5, 12% annual improvement of tester to test the 4% annual improvement of semiconductor manufacturing process………………………………….……39
Table 5-2 Multiple tests improvement test yield…………………………….……….……..…44
Table 5-3 Multiple tests for maximizing the yield without degrading quality (300ppm)…..…47
Table 5-4 Test Method impact on Yt & Qt……………………………………………………50
Table 5-5 A comparison of the Yt and DUT from two test methods.…………………………52
Table 5-6 A method used to improve the measurement yield in IC testing...…………………57
Table 5-7 Repeated test method to improve test yield……………………...…………………62
參考文獻 References
1. Automotive Electronics Council : Guidelines for part average testing AEC - Q001-REV-C. 2003, http://www.aecouncil.com/Documents/AEC_Q001_Rev_C. pdf.
2. Automotive Electronics Council: Zero Defects Guideline AEC - Q004. 2006, http://www.aecouncil.com/Documents/AEC_Q004_DRAFT.pdf.
3. P. Nigh, “Achieving quality levels of 100 DPM: it′s possible... but roll up your sleeves and be prepared to do some work,” in Proc. of the 2004 International Conferce on Testt, pp. 26-28, Charlotte, NC、USA, Oct. 2004.
4. R. H. Williams and C. F. Hawkins, “The Economics of Guardband Placement,” in Proc. of the IEEE International Test Conference (ITC), pp. 218-225, Baltimore, MD、USA, 1993.
5. International Technology Roadmap: Semiconductors Test and Test Equipment. 1999, http://cva.stanford.edu/classes/cs99s/papers/Roadmap1999.pdf.
6. International Technology Roadmap: Semiconductors Test and Test Equipment. 2001, http://www.itrs2.net/itrs-reports.html.
7. C. -H. Yeh and J. -E. Chen, “Multiple Tests for Maximizing the Yield without Degrading Quality,” in Proc. of the 3rd VLSI Test Technology Workshop, pp.76-81, Taiwan, 2009.
8. C. -H. Yeh and J. -E. Chen, “Repeated Testing Applications for Improving the IC Test Quality to Achieve Zero Defect Product Requirements,” Journal of Electronic Testing, Vol 35, 4, pp. 459–472, 2019.
9. C. -H. Yeh and J. -E. Chen, “Test yield and quality analysis models of chips,” Journal of the Chinese Institute of Engineers, Vol 4, 2020.
10. B. G. West, “Accuracy requirements in at-speed functional test,” in Proc. of the International Test Conference 1999. Proceedings (ITC), pp. 780–787, Atlantic City, NJ、USA, 1999.
11. C. H. Stapper, F. M. Armstrong, and K. Saji, “Integrated Circuit Yield Statistics,” in Proc. of the IEEE, Vol 71, 4, pp. 453-470, Apr. 1983.
12. International Technology Roadmap for Semiconductors 2.0: System Integration. 2015, http://www.itrs2.net/itrs-reports.html.
13. C. L. Henderson, R. H. Williams, and C. F. Hawkins, “Economic Impact of Type I Test Errors at System and Board Levels,” in Proc. of the International Test Conference (ITC), pp. 441-451, Baltimore, MD、USA, 1992.
14. J. -E. Chen and C. -H. Yeh, “Test Guardbanding for Yield and Quality Estimation,” in Proc. of the. International Test Synthesis Workshop, pp. 114-115、USA, 2004.
15. E. Aranha and P. Borba, “Test Effort Estimation Models Based on Test Specifications,” Academic and Industrial Conference Practice and Research Techniques - MUTATION (TAICPART-MUTATION 2007), pp.10-14 Sept. 2007.
16. R. H. Williams and C. F. Hawkins, “Errors in testing,” in Proc. of the International Test Conference 1990, pp. 1018-1027, Washington, DC、USA, 10-14 Sept. 1990.
17. R. H. Williams, R. G. Wagner, and C. F. Hawkins, “Testing Errors: Data and Calculations in an IC Manufacturing Process,” in Proc. of the International Test Conference (ITC), pp. 352-361, Baltimore, MD、USA, 1992.
18. R. Raina, “Establishing a defect prediction model using a combination of product metrics as predictors via Six Sigma methodology,” in Proc. of the 2010 International Symposium on Information Technology, Kuala Lumpur, Malaysia, 15-17 June 2010.
19. W. Dalal and S. Miao, “The Value of Tester Accuracy,” in Proc. of the International Test Conference 1999. Proceedings (IEEE Cat. No.99CH37034) (ITC), pp. 518-523, Atlantic City, NJ, USA, 30-30 Sept. 1999.
20. S. C. Shyu, C. W. Ku, H. J. Wu, and J. -E. Chen, “THND: A Test Process Model from a Quality Perspective,” The Eighth VLSI Design/CAD Symp., pp. 65-68, 1997.
21. P. D. Fisher and R. Nesbitt, “The Test of Time: Clock-Cycle Estimation and Test Challenges for Future Microprocessors,” IEEE Circuits and Devices Magazine, Vol 14, 2, pp. 37-44, 1998.
22. C. -H. Yeh and J. -E. Chen, “The Decision Mechanism Uses the Multiple-Tests Scheme to improve Test Yield in IC Testing,” in Proc. of the International Test Conference in Asia, ITC-Asia 2020, Taipei, Taiwan, September 23-25.
23. S. Sengupta, “Test strategies for nanometer technologies,” in Proc. of the 2004 International Conferce on Test, Charlotte, NC, USA, USA, 26-28 Oct. 2004.
24. R. Raina, “Achieving Zero-Defects for Automotive Applications,” in Proc. of the 2008 IEEE International Test Conference, Santa Clara, CA, USA, 28-30 Oct. 2008.
25. J. H. Westover, “Practical test strategies for users of 100 p.p.m. ICs,” Meeting the Tests of Time, Washington, DC、USA, 29-31 Aug. 1989.
26. B. Gessner, “How to ensure zero defects from the beginning with semiconductor test methods,” in Proc. of the 2007 IEEE International Test Conference, Santa Clara, CA, USA, 21-26 Oct. 2007.
27. J. Bedsole and R. Raina, A. Crouch, and MS. Abadir, “Very low cost testers: Opportunities and challenges,” in Proc. of theIEEE Design & Test of Computers (ITC) , Vol 18, 5, pp 60-69, 2001.
28. J. M. Soden and C. F. Hawkins, “Quality testing requires quality thinking,” in Proc. of the 2010 International Symposium on Information Technology, Baltimore, MD, USA, 17-21 Oct. 1993.
29. R. Madge, B. Benware, M. Ward and R. Daasch, “The value of statistical testing for quality, yield and test cost improvement,” in Proc. of the IEEE International Conference on Test, 2005, Austin, TX, USA, 8-8 Nov. 2005.
30. M. Nicolaidis, “On-line testing for VLSI,” in Proc. of the International Test Conference 1997, Washington, DC, USA, USA, 6-6 Nov. 1997.
31. B. G. West, “At-speed structural test ,” in Proc. of the International Test Conference 1999 Proceedings, Baltimore, MD、USA, 1999.
32. B. Vermeulen, C. Hora, B. Kruseman, E. J. Marinissen and R. van Rijsinge, “Trends in testing integrated circuits,” in Proc. of the 2004 International Conferce on Test, Charlotte, NC, USA, USA, 26-28 Oct. 2004.
33. J. L. Roehr, “Measurement ratio testing for improved quality and outlier detection,” in Proc. of the 2007 IEEE International Test Conference, Santa Clara, CA, USA, 21-26 Oct. 2007.
34. G. Wittie, “Car IC test changing but the same quality goal,” in Proc. of the 2007 IEEE International Test Conference, Santa Clara, CA、USA, 21-26 Oct. 2007.
指導教授 陳竹一(Jwu-E Chen) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明