博碩士論文 103581007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:18.118.142.230
姓名 邱鸞嬌(Luan-Jiau Chiu)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用基於超寬頻雷達的二階層EEMD方法偵測動靜態者之呼吸與心率
(UWB Radar Based Static/Dynamic Human Breathing and Heart Rate Detections Using Two-layer EEMD Method)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近代,超寬頻雷達常被用來做為遠距感測生命工具或非接觸式生理信號監視器,如:對車輛駕駛員進行健康監護。透過從身體反射的雷達回波,經接收與信號處理後(降低身體運動和環境雜訊等干擾),可分離出心臟跳動和肺呼吸的信號,達到健康監護目的。但因心跳信號極微小,容易被呼吸諧波和環境雜波掩蓋,心跳、呼吸頻率又很接近,使得一般頻率濾波器難以分離它們,一般偵測方法也不易偵測心跳信號。再者,身體隨時在靜/動態中,身體運動回波信號遠大於兩個生理信號,導致信號干擾和相互作用問題;因此,傳統固定特徵檢測法,不太可能找到移動者生理活動特徵;且身體運動信號干擾影響,也是值得研究的課題。
本論文提出二階層EEMD方法,可有效地排除雷達回波信號中環境干擾與系統雜訊,分離出人體呼吸和微弱心跳信號。並針對靜態/動態目標分別提出第一谷峰法(FVPIEF method)、多特徵對準法(MFA method),利用雷達回波強度衰減和時間延遲、人體不同組織層導電介質特性,以偵測時間興趣區(TROI)及萃取基於局部最佳化的生理活動單特徵/多特徵,並校準身體運動影響。透過模擬和實驗,證明提出方法在實驗室和汽車環境中,可有效、可靠地評估靜/動態志願者呼吸率和心跳率。
摘要(英) Nowadays, Ultra-wideband (UWB) radar is an important remote sensing tool of life detection or a non-contact monitor of the physiological signals, such as health monitoring for a vehicle driver. By processing the received UWB pulse echoes reflected from the body, different signals corresponding to heart activity and breathing, corrupted by body motion and the environment noise etc., are wanted to be separated clearly for health-monitoring purposes. However, the heartbeat signal is so tiny that it is covered by breathing harmonics and clutters. At the same time, since the frequencies of the vital signals are very close, usually around 1 Hz, it is difficult to apply an ordinary frequency filter to separate them apart. This problem induces that the vital signal detection method, usually, only detects the large breath signal, not the heartbeat signal. Further, the driver body is in static/dynamic situation at any time. Usually, the body motion echo signal is much larger than other twos, which will cause signal interference and interaction problems. Thus, conventional fixed feature detection methods are not likely to find those movable physiological active features. Meanwhile, to reduce physiological feature bias from body motion, and efficiently obtain valuable physiological information are also the subjects worthy of study.
This dissertation proposes a two-layer EEMD method, which effectively eliminates environmental interference and system noise in radar echo signals, and separates human breathing and weak heartbeat signals. Moreover, for static/dynamic human vital detection, the FVPIEF (first valley-peak of IMF energy function) method and the MFA (multi-feature alignment) method are proposed. Both methods utilize the characteristics of the strength attenuation and time delay of UWB radar echo, and the characteristics of conductive media in different tissue layers of the human body to detect the time-region-of-interest (TROI) and extract the single-/multi- feature of vital activities based on local optimization, and calibrate body motion effects. The simulation and experiment results show the proposed methods can effectively and reliably evaluate breathing and heart rates in static or/and dynamic volunteer situation, both in laboratory and car.
關鍵字(中) ★ 對準
★ 呼吸率
★ 總體經驗模態分解法
★ 心跳率
★ 本質模態函數
★ 遠距感測
★ 追蹤
★ 超寬頻雷達
關鍵字(英) ★ alignment
★ breathing rate
★ nsemble empirical mode decomposition (EEMD)
★ heart rate
★ intrinsic mode function (IMF)
★ remote sensing
★ tracking
★ ultra-wideband radar (UWB)
論文目次 CHAPTER I
INTRODUCTION 1
1.1 Background and Motivation 1
1.2 Objectives of Dissertation 2
1.3 Survey of Previous Work 4
1.4 Organization of Dissertation 6
CHAPTER II
METHODS AND MATERIALS 9
2.1 UWB Radar and FCC Regulations 9
2.2 Human Tissue and Dielectric Permittivity Model 14
2.3 Radio Propagation Models 16
2.3.1 Transmitter model 16
2.3.2 Human chest movement model 17
2.3.3 Channel model 18
2.3.4 Receiver model 18
2.4 EEMD and PBDEEMD 19
2.4.1 Ensemble empirical mode decomposition (EEMD) 19
2.4.2 Pseudo-bi-dimensional ensemble empirical mode decomposition (PBDEEMD) 21
CHAPTER III
FVPIEF-BASED TWO-LAYER EEMD METHOD, BR/HR DETECTIONS IN STATIC HUMAN 24
3.1 Static detection issue and previous studies 24
3.2 Proposed FVPIEF Based Two-layer EEMD Method 26
3.3 Detecting Simulations in Different Signal-to-noise Ratio 31
3.3.1 UWB Tx/Rx signal simulation model 32
3.3.2 Vital detection in echo with different SNRs 35
3.4 Subjects and Task 40
3.5 Experiments of Human Physiological Activity Detection 40
3.5.1 Heartbeat detecting in breathing state 41
3.5.2 Heartbeat detecting in breath-holding state 42
3.5.3 Both breathing and breath-holding states 44
3.6 Summary 45
CHAPTER IV
MULTI-FEATURE ALIGNMENT TWO-LAYER EEMD METHOD, BR/HR DETECTIONS IN DYNAMIC/STATIC HUMAN 46
4.1 Dynamic detection issue and previous studies 46
4.2 Extending Materials and Methods 48
4.2.1 UWB radar, human tissue and dielectric permittivity model 48
4.2.2 Radio propagation model of swinging human 49
4.2.3 Clutter suppression by PBDEEMD 51
4.3 Proposed Multi-feature Alignment Two-layer EEMD Method 53
4.3.1 Multilayer echo delay time model 53
4.3.2 Multi-feature model 54
4.3.3 Multi-feature Alignment (MFA) 58
4.3.4 Algorithm 60
4.4 Simulations of Various Human Swinging Paths 63
4.5 Experiments of Dynamic/Static Human in Real Environments 71
4.6 Summary 79
CHAPTER V
CONCLUSION and FUTURE WORKS 81
5.1 Conclusion 81
5.2 Future Works 85
BIBLIOLOGRAPHY 87
PUBLISHING LIST 93
參考文獻 [1] S. Chang, N. Mitsumoto, J.W. Burdick, "An algorithm for UWB radar-based human detection", Proc. IEEE RadarCon 2009, May 4–8, 2009.
[2] S. Chang, R. Sharan, M. Wolf, N. Mitsumoto, J.W. Burdick, "UWB radar-based human target tracking", Proc. IEEE RadarCon 2009, May, 2009, pp. 1–6.
[3] S. Chang, M. Wolf, J. W. Burdick, "Human detection and tracking via ultra-wideband (UWB) radar", Proc. IEEE Int. Conf. Robot. Autom. (ICRA), pp. 452-457, May 2010.
[4] P. Bernardi, R. Cicchetti, S. Pisa, E. Pittella, E. Piuzzi, O. Testa, “Design, realization, and test of a UWB radar sensor for breath activity monitoring,” IEEE Sensors J., vol. 14, no. 2, pp. 584–596, Feb. 2014.
[5] K.-K. Shyu, L.-J. Chiu, P.-L. Lee, T.-H. Tung, and S.-H. Yang, “Detection of breathing and heart rates in uwb radar sensor data using FVPIEF based two-layer EEMD,” IEEE Sensors J., vol. 19, no. 2, pp. 774–784, Jan, 2019.
[6] W. P. Huang, C. H. Chang, and T. H. Lee, “Real-time and noncontact impulse radio radar system for μm movement accuracy and vital-sign monitoring applications,” IEEE Sensors J., vol. 17, no. 8, pp. 2349–2358, Apr. 2017.
[7] K. J. Lee, C. Park, and B. Lee, “Tracking driver’s heart rate by continuous wave Doppler radar,” in Proc. 2016 IEEE 38th Annu. Int. Conf. Eng. Med. Biol. Soc., pp. 5417–5420, Aug. 2016.
[8] S. Leonhardt et al., "Unobtrusive vital sign monitoring in Automotive Environments—A review", Sensors, vol. 18, no. 9, 2018.
[9] Y. Xu, S. Dai, S. Wu, J. Chen, G. Fang, "Vital sign detection method based on multiple higher order cumulant for ultra-wideband radar,” IEEE Trans. Geosci. Remote Sens., vol. 50, no. 4, pp. 1254-1265, Apr. 2012.
[10] N. E. Huang, Z. Wu, "A review on Hilbert-Huang transform: Method and its applications to geophysical studies,” Rev. Geophys., 2008, vol. 46, no. RG2006.
[11] Z. Wu, N. E. Huang, "Ensemble empirical mode decomposition: A noise-assisted data analysis method,” Adv. Adapt. Data Anal., vol. 1, pp. 1-41, 2009.
[12] Z. Liu, L. Liu, B. Barrowes, "The application of the Hilbert–Huang transform in through-wall life detection with UWB impulse radar,” PIERS Online, vol. 6, no. 7, pp. 695-699, 2010.
[13] E. Pittella, B. Zanaj, S. Pisa, M. Cavagnaro, "Measurement of breath frequency by body-worn UWB radars: A comparison among different signal processing techniques," IEEE Sensors J., vol. 17, no. 6, pp. 1772-1780, Mar. 2017.
[14] M. Cavagnaro et al., "UWB pulse propagation into human tissues,” Phys. Med. Biol., vol. 58, pp. 8689-8707, 2013.
[15] E. Pittella, S. Pisa, M. Cavagnaro, "Breath activity monitoring with wearable UWB radars: Measurement and analysis of the pulses reflected by the human body,” IEEE Trans. Biomed. Eng., vol. 63, no. 7, pp. 1147-1154, Jul. 2016.
[16] M. Baldi, G. Cerri, F. Chiaraluce, L. Eusebi, P. Russo, "Non-invasive UWB sensing of astronauts’ breathing activity,” Sensors, vol. 15, no. 1, pp. 565-591, 2015.
[17] H. S. Cho, Y. J. Park, H. K. Lyu, "Robust heart rate detection method using UWB impulse radar,” Proc. Int. Conf. Inf. Commun. Technol. Convergence, vol. 10, pp. 1138-1142, 2016.
[18] K.-K. Shyu, L.-J. Chiu, P.-L. Lee, and L.-H. Lee, “UWB Simultaneous Breathing and Heart Rate Detections in Driving Scenario Using Multi-feature Alignment Two-layer EEMD Method,” IEEE Sensors J., vol. xx, no. x, pp. xx–xx, xx, 2020. (Early Access, DOI: 10.1109/JSEN.2020.2992687, 06 May 2020)
[19] A. Hashemi, A. Ahmadian, M. Baboli, "An Efficient Algorithm for Remote Detection of Simulated Heart Rate Using Ultra-Wide Band Signals", American Journal of Biomedical Engineering, vol. 3, no. 6, pp. 199-207, 2013
[20] Y. S. Koo, L. Ren, Y. Wang, and A. E. Fathy, “UWB Micro-doppler radar for human Gait analysis, tracking more than one person, and vital sign detection of moving persons,” in IEEE MTT-S Int. Microw. Symp. Dig. (IMS), Jun. 2013, pp. 1–4.
[21] F. Khan and S. H. Cho, “A detailed algorithm for vital sign monitoring of a stationary/non-stationary human through IR-UWB radar,” Sensors, vol. 17, no. 2, p. 290, 2017.
[22] T. Otim, L. E. Díez, A. Bahillo, P. Lopez-Iturri and F. Falcone, "Effects of the Body Wearable Sensor Position on the UWB Localization Accuracy," Electronics, vol. 8, no. 11 , p.1351, 2019.
[23] F. Zafari, A. Gkelias, K. Leung, "A survey of indoor localization systems and technologies," Sep. 2017, [online] Available: https://arxiv.org/abs/1709.01015.
[24] J. Lien, N. Gillian, M. E. Karagozler, P. Amihood, C. Schwesig, E. Olson, H. Raja, and I. Poupyrev, “Soli: Ubiquitous gesture sensing with millimeter wave radar,” ACM Trans. Graph., vol. 35, no. 4, pp. 142:1–142:19, 2016.
[25] C. Gu, J. Lien, "A two-tone radar sensor for concurrent detection of absolute distance and relative movement for gesture sensing", IEEE Sensors Lett., vol. 1, no. 3, 2017.
[26] C. Li, J. Lin, "Complex signal demodulation and random body movement cancellation techniques for non-contact vital sign detection", IEEE MTT-S Int. Microw. Symp. Dig., pp. 567-570, 2008.
[27] Xiaolin Liang et al., "Ultra-Wideband Impulse Radar Through-Wall Detection of Vital Signs", Nature News, Sept. 2018.
[28] L. Ren, H. Wang, K. Naishadham, O. Kilic, A. E. Fathy, "Phase-based methods for heart rate detection using UWB impulse doppler radar", IEEE Trans. Microw. Theory Techn., vol. 64, no. 10, pp. 3319-3331, Oct. 2016.
[29] L. Ren, Y. S. Koo, Y. Wang, A. E. Fathy, "Noncontact heartbeat detection using UWB impulse Doppler radar", Proc. IEEE Biomed. Wireless Technol. Netw. Sens. Syst. (BioWireleSS), pp. 1-3, Jan. 2015.
[30] B. R. Phelan, M. A. Ressler, K. I. Ranney, J. T. Clark, K. D. Sherbondy, R. M. Narayanan, "Design of Ultrawideband Stepped-Frequency Radar for Imaging of Obscured Targets," IEEE Sensors Journal, vol. 17, no. 14, pp. 4435-4446, 2017.
[31] M. Chiani, A. Giorgetti, E. Paolini, "Sensor radar for object tracking", Proc. IEEE, vol. 106, no. 6, pp. 1022-1041, Jun. 2018.
[32] D. Li, K. D. Wong, Y. H. Hu, A. M. Sayeed, "Detection classification and tracking of targets", IEEE Signal Process. Mag., vol. 19, no. 2, pp. 17-29, Mar. 2002.
[33] J. Li, L. Liu, Z. Zeng, F. Liu, "Simulation and signal processing of UWB radar for human detection in complex environment,” Proc. 14th Int. GPR Conf., pp. 209-213, Jun. 2012.
[34] C. H. Wu, H. C. Chang, P. L. Lee, K. S. Li, J. J. Sie, C. W. Sun, C. Y. Yang, P. H. Li, H. T. Deng and K. k. Shyu, "Frequency recognition in an SSVEP-based brain computer interface using empirical mode decomposition and refined generalized zero-crossing," J. Neurosci. Methods, vol. 196, no. 1, pp. 170-181, Mar. 2011.
[35] S. H. N. Lin, G. H. Lin, P. J. Tsai, A. L. Hsu, M. T. Lo, A. C. Yang, C. P. Lin, C. W. Wu, "Sensitivity enhancement of task-evoked fMRI using ensemble empirical mode decomposition,” J. Neurosci. Methods, vol. 258, pp. 56-66, Jan. 2016.
[36] Z. Wu, N. Huang, X. Chen, "The multidimensional ensemble empirical mode decomposition method,” Adv. Adapt. Data Anal., vol. 1, no. 3, pp. 339-372, 2009.
[37] G. Varotto, E. M. Staderini, "On the UWB medical radars working principles,” Int. J. Ultra Wideband Commun. Syst., vol. 2, no. 2, pp. 83-93, 2011.
[38] X. Chen, S. Kiaei, "Monocycle shapes for ultra wideband system,” IEEE Int. Symp. Circuits and Systems, vol. 1, pp. 26-29, 2002.
[39] Y. Rong, D. W. Bliss, "Harmonics-based multiple heartbeat detection at equal distance using uwb impulse radar", Radar Conference (RadarConf) IEEE, 2018.
[40] E. Schires, P. Georgiou, T. S. Lande, "Vital Sign Monitoring Through the Back Using an UWB Impulse Radar With Body Coupled Antennas", IEEE Transactions on Biomedical Circuits and Systems, vol. 12, no. 2, pp. 292-302, April 2018.
[41] A. Sharafi, M. Baboli, M. Eshghi, A. Ahmadian, "Respiration-rate estimation of a moving target using impulse-based ultra wideband radars", Australas. Phys. Eng. Sci. Med., vol. 35, no. 1, pp. 31-39, 2012.
[42] Nathaniel J. August, "Appendix 10.C. UWB Regulations" in An Introduction to Ultra Wideband Communication Systems, Ed. Prentice Hall PTR: J. H. Reed, 2005.
[43] Time Domain’s ultra wideband (UWB): definition and advantages, Time Domain Corp., Huntsville, AL, Jun. 2012.
[44] Channel Analysis Tool (CAT) User Guide, Time Domain Corp., Huntsville, AL, 2014.
[45] M. Ackerman, "The visible human project,” Proc. IEEE, vol. 86, no. 3, pp. 504-511, Mar. 1998.
[46] K. N. Sahu, M. Satyam, C. Dhanunjaya Naidu, K. Jaya Sankar, "Modeling of human thorax and study on human heart activity with UWB radar from UHF to S-band ,” IEEE International Conference on Signal Processing and Communication Engineering Systems, pp. 370 - 374, 2015.
[47] M. Seguin, J. Bourqui, E. Fear, M. Okoniewski, " Monitoring the heart with ultra-wideband microwave signals: evaluation with a semi-dynamic heart model,” Biomed. Phys. Eng. Exp., vol. 2, no. 3, pp. 035011, 2016.
[48] E.M. Staderini, "UWB radars in medicine,” IEEE Aerosp. Electron. Syst. Mag., vol. 17, no. 1, pp. 13-18, 2002.
[49] E. Taoufik, S. Nabila, B. Ridha, "New Radar System In Medicine,” The 2010 European Signal Processing Conference (EUSIPCO-2010).
[50] S. Gabriel, R. W. Lau, and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements on the frequency range 10 Hz to 20 GHz,” Phys. Med., Biol., vol. 41, no. 11, pp. 2251–2269, Nov. 1996.
[51] C. Gabriel, A compilation of the dielectric properties of body tissues at RF and microwave frequencies, Radiofrequency Radiation Division, Brooks AFB, 1996.
[52] J. D. Choi, W. E. Stark, "Performance of ultra-wideband communications with suboptimal receivers in multipath channels,” IEEE J. Select. Areas Commun., vol. 20, no. 9, pp. 1754-1766, 2002.
[53] H. Sakuma, N. Fujita, T. K. Foo, G. R. Caputo, S. J. Nelson, J. Hartiala, A. Shimakawa, C. B. Higgins, "Evaluation of left ventricular volume and mass with breath-hold cine MR imaging," Radiology, vol. 188, pp. 377-380, Aug. 1993.
[54] A. Lazaro, D. Girbau, R. Villarino, "Analysis of vital signs monitoring using an IR-UWB radar,” Proc. PIER, vol. 100, pp. 265-284, 2010.
[55] M. Singh, G. Ramachandran, "Reconstruction of sequential cardiac in-plane displacement patterns on the chest wall by laser speckle interferometry,” IEEE Trans. Biomed. Eng., vol. 38, no. 5, pp. 483-489, May 1991.
[56] K. Naishadham, J. E. Piou, L. Ren, A. E. Fathy, "Estimation of cardiopulmonary parameters from ultra wideband radar measurements using the state space method,” IEEE Trans. Biomed. Circuits Syst., vol. 10, no. 6, pp. 1037-1046, Dec. 2016.
[57] A. Gharamohammadi, F. Behnia and R. Amiri, "Imaging Based on Correlation Function for Buried Objects Identification," in IEEE Sensors Journal, vol. 18, no. 18, pp. 7407-7413, 15 Sept.15, 2018.
[58] A. Gharamohammadi, Y. Norouzi, and H. Aghaeinia, "Optimized UWB Signal to Shallow Buried Object Imaging," Progress In Electromagnetics Research Letters, Vol. 72, 7-10, 2018.
[59] F. Guede-Fernández, M. Fernández-Chimeno, J. Ramos-Castro, M. A. García-González, "Driver drowsiness detection based on respiratory signal analysis", IEEE Access, vol. 7, pp. 81826-81838, 2019.
[60] Sang-Ho Jo, Jin-Myung Kim, and Dong Kyoo Kim. "Heart Rate Change While Drowsy Driving." Journal of Korean medical science 34.8 (2019).
[61] H. Boedinoegroho, A. K. Rahardjo, A. Kurniawan, and I. K. E. Purnama, "Development of Fatigue Detection Device Based On IR-UWB and Optic Sensor to Driver." 2019 International Conference on Computer Engineering, Network, and Intelligent Multimedia (CENIM). IEEE, 2019.
指導教授 徐國鎧 李柏磊(Kuo-Kai Shyu Po-Lei Lee) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明