博碩士論文 107521106 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:107 、訪客IP:3.145.52.182
姓名 張維中(Wei-Chung Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 運用集總元件之三模共振器的研究與應用
(Research and Application of Triple-Mode Resonator with Lumped Elements)
相關論文
★ 應用於微波之多頻帶通濾波器之設計★ 使用可開關式帶通濾波器之低相位雜訊雙頻振盪器研製
★ 共平面波導饋入槽孔偶極天線之寬頻與多頻應用★ 可具任意通帶之可調式多工器
★ 利用非對稱步階式阻抗設計寬通帶寬止帶雙工器★ 基於散佈式耦合饋入架構之可開關式帶通濾波器
★ 共平面波導饋入之寬頻雙圓極化天線★ 基於多共振路徑所設計之印刷式多頻帶天線
★ 四通道可切換式帶通濾波器之研究★ 雙模態寬阻帶之基板合成波導濾波器
★ 微小化倍頻壓抑直交分合波器之研製★ 可繞式小型偶極天線之研製
★ 使用多重模態共振器實現多功能帶通濾波器★ 應用於Radio-over-Fiber系統之超高速微波光子發射器
★ 使用長饋入線架構研製小型且具有高隔絕度的多工器★ 具有寬截止頻帶的帶通濾波器之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本論文提出了一個使用了集總元件(lumped elements)的三模態共振器,該電路由一個傳統半波長共振器中心並聯元件電容以及電感組成,因為使用了晶片電感電容的關係,共振器的整體面積約莫等於一個半波長共振器的面積,相較於一般三模態共振器,面積上有著明顯的縮小,而透過調整共振器的參數,可以使得共振器的三個共振頻率位置產生變化,因此可以設計出各式不同頻寬需求的電路,論文中使用此共振器設計了了三種不同的電路架構。
第一種電路依照所提出的共振器設計出了三個不同頻寬(14.2 %、55.5 %、98.7 %),中心頻在2.45 GHz的帶通濾波器,使用了不同厚度(1.524 mm、0.508 mm)但介電常數相同(3.38)的板材,調整電容電感值設計出符合所需頻寬的三模態共振器,並改變了耦合部分的間隙來滿足不同頻寬所需要的耦合量,文中詳細地提及了此帶通濾波器的設計流程,最後,設計並實作以驗證設計理念。
第二種電路為運用所提出的三模共振器,設計出高階超寬頻帶通濾波器,高階的設計主要適用於寬頻帶的部分,因此,設計了一個比例頻寬大於傳統UWB (Ultra-wideband )比例頻寬(3.1  10.6 GHz)的帶通濾波器,傳統寬頻帶濾波器若是使用耦合饋入的架構,往往有著耦合部分間隙過小的問題,此情況會造成實際製作蝕刻上的難度,為了改善此問題,模擬並分析了多種耦合的架構,最終設計出了一種耦合間隙不會過窄,且電路特性良好的超寬頻帶( 141 % )帶通濾波器。
第三種電路運用三模態共振器設計了有著濾波器效應的功率分波器,提出了一種濾波型功率分波器的設計方法,將電路分成濾波及隔離兩部分,透過濾波部分輸出端與隔離部分輸入端阻抗的變化,調整電路可實現的頻寬,配合三模共振器的設計,整體電路的頻寬有著極大的自由度,最後實作了寬頻帶(100.8 %)與窄頻帶(10.3 %)的濾波型功率分波器,以證實設計概念的正確性。
摘要(英) This thesis proposes a triple-mode resonator using lumped elements. The circuit consists of a half-wavelength resonator with parallel capacitor and inductor. By adjusting the parameters of the resonator, the three resonance frequency of the resonator can be changed. Therefore, a variety of circuits with different bandwidth requirements can be designed. In this thesis, three different circuit architectures are designed using this resonator.
Based on the proposed resonator, the first circuit is bandpass filters with different bandwidths (14.2%, 55.5%, 98.7%) centered at 2.45 GHz. To meet the required bandwidths, one can adjust the capacitance and inductance of the lumped elements. The gap of the coupling structure is tuned for coupling between resonator and I/O. The design flow of this bandpass filter was noted in detail in the article.
The second circuit is a high-order ultra-wideband bandpass filter using the proposed triple-mode resonator. In traditional wideband filter, there is often a problem that the gap of the coupled part is too small. This situation will cause etching difficulty. To solve this problem, several coupling architectures were simulated and analyzed. Finally, an ultra-wideband (141%) bandpass filter with a moderate coupling gap and good circuit characteristics is designed.
The third circuit uses a triple-mode resonator to design a filtering power divider. A design method is proposed. The circuit can be divided into filtering part and isolation part. Through the change of the output terminal impedance of the filtering part and the input terminal impedance of the isolation part, the achievable bandwidth of the circuit is adjusted. With the design of the triple-mode resonator, the circuit features flexible bandwidth and great design freedom. Finally, a wide band (100.8%) and narrow band (10.3%) filtering power divider were implemented to verify the design concept.
關鍵字(中) ★ 三模共振器
★ 帶通濾波器
★ 濾波型功率分波器
★ 共振器
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 論文架構 3
第二章 運用集總元件之三模共振器 5
2.1 開路及短路殘段負載(Stub-Loaded)共振器基本原理 5
2.2 並聯殘段負載的三模共振器 9
2.3 殘段負載與集總元件(Lumped-Element)的關係 11
2.4 運用集總元件之三模共振器 12
第三章 運用集總元件三模共振器設計帶通濾波器 16
3.1 帶通濾波器的基本設計原理 16
3.2 運用所提出之三模共振器設計帶通濾波器 25
3.3 寬頻帶通濾波器的模擬與量測 26
3.4 中寬頻帶通濾波器的模擬與量測 30
3.5 窄頻帶通濾波器的模擬與量測 33
第四章 運用集總元件三模共振器設計高階帶通濾波器 36
4.1 共振頻率分析 36
4.2 不同架構耦合饋入之分析(一) 38
4.3 不同架構耦合饋入之分析(二) 43
4.4 超寬頻帶通濾波器的模擬與量測 49
第五章 運用集總元件三模共振器設計功率分波器 56
5.1 威爾京生功率分波器 56
5.2 濾波型功率分波器設計原理 61
5.3 運用集總元件三模共振器設計濾波型功率分波器 62
第六章 結論 71
參考文獻 72
參考文獻 [1] I. Wolff, "Microstrip bandpass filter using degenerate modes of a microstrip ring resonator," Electron. Lett., vol. 8, no. 12, pp. 302-303, 15 June 1972.
[2] J. S. Hong and M. J. Lancaster, "Bandpass characteristics of new dual-mode microstrip square loop resonators," Electron. Lett., vol. 31, no. 11, pp. 891-892, 25 May 1995.
[3] M. Matsuo, H. Yabuki and M. Makimoto, "Dual-mode stepped-impedance ring resonator for bandpass filter applications," IEEE Trans. Microw. Theory Tech., vol. 49, no. 7, pp. 1235-1240, July 2001.
[4] W. Menzel, Lei Zhu, Ke Wu and F. Bogelsack, "On the design of novel compact broad-band planar filters," IEEE Trans. Microw. Theory Tech., vol. 51, no. 2, pp. 364-370, Feb. 2003.
[5] Y.-C. Chiou, J.-T. Kuo and E. Cheng, "Broadband quasi-Chebyshev bandpass filters with multimode stepped-impedance resonators (SIRs)," IEEE Trans. Microw. Theory Tech., vol. 54, no. 8, pp. 3352-3358, Aug. 2006.
[6] J. Hong, H. Shaman and Y. Chun, "Dual-mode microstrip open-loop resonators and filters," IEEE Trans. Microw. Theory Tech., vol. 55, no. 8, pp. 1764-1770, Aug. 2007.
[7] W.-H. Tu, "Compact double-mode cross-coupled microstrip bandpass filter with tunable transmission zeros," IET Microw. Antennas Propag., vol. 2, no. 4, pp. 373-377, June 2008.
[8] X. Guan, F. Yang, H. Liu and L. Zhu, "Compact and high-isolation diplexer using dual-mode stub-loaded resonators," IEEE Microw. Wirel. Compon. Lett., vol. 24, no. 6, pp. 385-387, June 2014.
[9] J.-R. Lee, J.-H. Cho and S.-W. Yun, "New compact bandpass filter using microstrip /4 resonators with open stub inverter," IEEE Microw. Guided Wave Lett., vol. 10, no. 12, pp. 526-527, Dec. 2000.

[10] L. Zhu and W. Menzel, "Compact microstrip bandpass filter with two transmission zeros using a stub-tapped half-wavelength line resonator," IEEE Microw. Wirel. Compon. Lett., vol. 13, no. 1, pp. 16-18, Jan. 2003.
[11] W.-H. Tu, "Broadband microstrip bandpass filters using triple-mode resonator," IET Microw. Antennas Propag., vol. 4, no. 9, pp. 1275-1282, Sept. 2010.
[12] W.-H. Tu, "Microstrip bandpass filters using cross-shaped triple-mode resonator," IET Microw. Antennas Propag., vol. 4, no. 9, pp. 1421-1426, Sept. 2010.
[13] W. Steyn and P. Meyer, "A shorted waveguide-stub coupling mechanism for narrow-band multimode coupled resonator filters," IEEE Trans. Microw. Theory Tech., vol. 52, no. 6, pp. 1622-1625, June 2004.
[14] U. Rosenberg, "Multiplexing and double band filtering with common-multimode cavities," IEEE Trans. Microw. Theory Tech., vol. 38, no. 12, pp. 1862-1871, Dec. 1990.
[15] U. Rosenberg and W. Hagele, "Advanced multimode cavity filter design using source/load-resonance circuit cross couplings," IEEE Microw. Guided Wave Lett., vol. 2, no. 12, pp. 508-510, Dec. 1992.
[16] M. H. Ren, D. Chen and C. H. Cheng, "A novel wideband bandpass filter using a cross-shaped multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., vol. 18, no. 1, pp. 13-15, Jan. 2008.
[17] H. J. Tang, W. Hong, J. Chen, G. Q. Luo and K. Wu, "Development of millimeter-wave planar diplexers based on complementary characters of dual-mode substrate integrated waveguide filters with circular and elliptic cavities," IEEE Trans. Microw. Theory Tech., vol. 55, no. 4, pp. 776-782, Apr. 2007.
[18] X. Chen and K. Wu, "Substrate integrated waveguide filters: design techniques and structure innovations," IEEE Microw. Magazine, vol. 15, no. 6, pp. 121-133, Sept.-Oct. 2014.

[19] K. Dhwaj, X. Li, Z. Shen and S. Qin, "Cavity resonators do the trick: a packaged substrate integrated waveguide, dual-band filter," IEEE Microw. Magazine, vol. 17, no. 1, pp. 58-64, Jan. 2016.
[20] L. Zhu, S. Sun and W. Menzel, "Ultra-wideband (UWB) bandpass filters using multiple-mode resonator," IEEE Microw. Wirel. Compon. Lett., vol. 15, no. 11, pp. 796-798, Nov. 2005.
[21] J. Gao, L. Zhu, W. Menzel and F. Bogelsack, "Short-circuited CPW multiple-mode resonator for ultra-wideband (UWB) bandpass filter," IEEE Microw. Wirel. Compon. Lett., vol. 16, no. 3, pp. 104-106, Mar. 2006.
[22] R. Li and L. Zhu, "Compact UWB bandpass filter using stub-loaded multiple-mode resonator," IEEE Microw. and Wirel. Compon. Lett., vol. 17, no. 1, pp. 40-42, Jan. 2007.
[23] Z. Zhang and F. Xiao, "An UWB bandpass filter based on a novel type of multi-mode resonator," IEEE Microw. Wirel. Compon. Lett., vol. 22, no. 10, pp. 506-508, Oct. 2012.
[24] K. Song, "Compact filtering power divider with high frequency selectivity and wide stopband using embedded dual-mode resonator," Electron. Lett., vol. 51, no. 6, pp. 495-497, Mar. 2015.
[25] C. Chen and Z. Ho, "Design equations for a coupled-line type filtering power divider," IEEE Microw. Wirel. Compon. Lett., vol. 27, no. 3, pp. 257-259, Mar. 2017.
[26] G. Zhang, X. Wang, J. Hong and J. Yang, "A high-performance dual-mode filtering power divider with simple layout," IEEE Microw. Wirel. Compon. Lett., vol. 28, no. 2, pp. 120-122, Feb. 2018.
[27] Y. Liu, L. Zhu and S. Sun, "Proposal and design of a power divider with wideband power division and port-to-port isolation: a new topology," IEEE Trans. Microw. Theory Tech., vol. 68, no. 4, pp. 1431-1438, Apr. 2020.
[28] D. M. Pozar, Microwave Engineering, 4th ed. New York: Wiley, 2012.

[29] J.-S. Hong and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, New York: Wiley, 2001.
[30] J.-S. Hong and M. J. Lancaster, "Couplings of microstrip square open-loop resonators for cross-coupled planar microwave filters," IEEE Trans. Microw. Theory Tech., vol. 44, no. 11, pp. 2099-2109, Nov. 1996.
[31] S. Sun and L. Zhu, "Capacitive-ended interdigital coupled lines for UWB bandpass filters with improved out-of-band performances," IEEE Microw. Wirel. Compon. Lett., vol. 16, no. 8, pp. 440-442, Aug. 2006.
[32] H. Shaman and J. Hong, "Asymmetric parallel-coupled lines for notch implementation in UWB filters," IEEE Microw. Wirel. Compon. Lett., vol. 17, no. 7, pp. 516-518, July 2007.
指導教授 凃文化(Wen-Hua Tu) 審核日期 2020-7-22
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明