博碩士論文 106521039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:96 、訪客IP:3.147.42.197
姓名 黃秋樺(Chiu-Hua Huang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於光電容積描記法之手腕脈波傳導速度估測
(Estimation of Pulse Wave Velocity Using Wrist Photoplethysmography)
相關論文
★ 具輸出級誤差消除機制之三位階三角積分D類放大器設計★ 應用於無線感測網路之多模式低複雜度收發機設計
★ 用於數位D類放大器的高效能三角積分調變器設計★ 交換電容式三角積分D類放大器電路設計
★ 適用於平行處理及排程技術的無衝突定址法演算法之快速傅立葉轉換處理器設計★ 適用於IEEE 802.11n之4×4多輸入多輸出偵測器設計
★ 應用於無線通訊系統之同質性可組態記憶體式快速傅立葉處理器★ 3GPP LTE正交分頻多工存取下行傳輸之接收端細胞搜尋與同步的設計與實現
★ 應用於3GPP-LTE下行多天線接收系統高速行駛下之通道追蹤與等化★ 適用於正交分頻多工系統多輸入多輸出訊號偵測之高吞吐量QR分解設計
★ 應用於室內極高速傳輸無線傳輸系統之 設計與評估★ 適用於3GPP LTE-A之渦輪解碼器硬體設計與實作
★ 下世代數位家庭之千兆級無線通訊系統★ 協作式通訊於超寬頻通訊系統之設計
★ 適用於3GPP-LTE系統高行車速率基頻接收機之設計★ 多使用者多輸入輸出前編碼演算法及關鍵組件設計
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-22以後開放)
摘要(中) 人體動脈硬化程度,直接關係著許多與心血管有關的慢性病的發生,脈波傳導速率是目前用以評估動脈硬化的重要指標之ㄧ,然而現今量測脈波傳導速率需在醫院量測,醫院所採用的非侵入式動脈硬化檢測,大都是以壓脈帶方式量測脈波傳導速率,其計算方式是以量測之間的距離與時間差下去評估,如果在家就能隨時量測,可增加便利性並且有助於病情的診斷。目前光容積波訊號的形態已得到廣泛研究,可以由光容積波訊號獲取與血液動力學狀態高度相關的各種特徵,加上最近穿戴式設備的快速發展,透過泛用性的生理訊號量測來得知血管變化的方式逐漸引起了人們的廣泛關注。
本論文使用心電訊號和光容積波訊號來估測脈波傳導速率。從穿戴式裝置量測手腕和手指心電訊號和光容積波訊號,對手腕和手指做同步和前處理,將量測產生的干擾或不良訊號移除。對光容積波訊號取特徵,針對特徵丟失和歧義性的問題,提出了解決方法來處理,利用三階微分和二階微分光容積脈衝波的極值來識別二階微分和一階微分的光容積脈衝波波形中缺失或模糊的特徵,可使特徵萃取達98.6%以上的比率。另外,針對光體積描記信號的加權脈衝分解分析,採用五個高斯波解析,並以加權最小平方法準則進行優化,我們將權重施加於被認為可提供血管年齡和血管僵硬度的脈搏段,另外適當設定高斯參數的邊界約束,從結果可以看出加權使分解穩定,高斯參數的平均方差減小。最後使用手腕特徵估測脈波傳導速率,採用極限梯度提升(XGBoost)的演算法,女性均方根誤差最好的結果可以達到177.70(cm/s),男性均方根誤差最好的結果約為144.39(cm/s)。
摘要(英) The degree of arteriosclerosis is directly related to the occurrence of many chronic diseases. Currently, pulse wave velocity is one essential metricused to evaluate arteriosclerosis. However, the pulse wave velocity is usually measured in the hospital nowadays. The non-invasive method is mostly based on the pressure belt, and calculates their distance divided by the time difference. At present, morphology of the photoplethysmography signals has been widely studied so as to acquire various features that are highly related with hemodynamic states. Recently, the rapid development of wearable devices makes it possible to realize vascular conditions. This change has gradually aroused widespread concern.
In this thesis, we use wrist electrocardiogram (ECG) signals and photoplethysmography (PPG) signals to estimate pulse wave velocity. The ECG and PPG of wrist and finger are measured from wearable devices. These signals are first synchronized and pre-processed to remove interference and bad-quality signals generated during the measurement. Considering the problems of missing and ambiguous features, we propose imputation and resolution techniques. The extrema of the third-order derivative and second-order derivative PPG waveforms are employed to identify the missing or ambiguous features of the second-order derivative and first-order derivative PPG waveforms. We propose weighted pulse decomposition analysis that emphasize the PPG pulse portion corresponding to point a to point f of the second-order derivative PPG. Five Gaussian waves are used for decomposition In addition, the boundary constraints for Gaussian wave parameters are properly set. From the results, we can see that weighting makes the decomposition stable and the variances of Gaussian parameters reduced. Finally, the wrist PPG and ECG features are employed to estimate the brachial ankle pulse wave velocity. The root mean square errors (RMSE) of female estimation results is 177.70(cm/s), and of male estimation results is about 144.39(cm/s), which outperform the result from the conventional multiple linear regression.
關鍵字(中) ★ 光電容積描記法
★ 脈波傳導速度
關鍵字(英)
論文目次 摘要 i
Abstract ii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 緒論 1
1.1 研究動機 1
1.2 研究方法 2
1.3 論文組織 3
第二章 生理訊號介紹 4
2.1 心電圖 (Electrocardiogram, ECG) 4
2.2 光容積波訊號 (Photoplethysmogrtaphy, PPG) 5
2.3 脈波傳導速率 (Pulse Wave Velocity, PWV) 6
第三章 特徵萃取 7
3.1 流程圖 7
3.2 前處理 (Preprocessing) 8
3.2.1 離散小波轉換 9
3.2.2 移除基線飄移 (Removing Baseline Wandering) 13
3.2.3 移除60赫茲干擾 (Removing 60Hz Interference) 16
3.2.4 正規化 (Normalization) 16
3.3 同步 (Synchronization) 17
3.3.1 預篩檢 (Pre-screening) 19
3.3.2 偵測心電訊號R波峰的位置 21
3.3.3 偵測光容積波訊號波谷的位置 22
3.3.4 去除離群值 (Outlier Removal) 24
3.3.5 滑動窗口匹配 (Sliding Window Matching) 25
3.4 光容積波訊號特徵萃取 27
3.4.1 特徵萃取多型態波型 28
3.4.2 特徵萃取方法 31
3.5 訊號品質指標 (Signal Quality Index) 39
3.6 波形拆解 (Waveform Decomposition) 41
3.6.1 加權脈衝分解分析 42
3.6.2 光容積波波形的多型態 45
3.6.3 波形拆解的訊號品質指標 (Waveform Decomposition SQI) 47
第四章 脈波傳導速率估測 50
4.1 傳統方法 50
4.2 演算法 53
4.2.1 隨機森林(Random Forest) 53
4.2.2 Boosting演算法 54
4.3 資料處理 57
4.3.1 資料流程 57
4.4.2 極限梯度提升參數設定 64
4.4.3 估測結果 67
第五章 結論 71
參考文獻 72
參考文獻 [1] S. R. Alty, N. Angarita-Jaimes, S. C. Millasseau and P. J. Chowienczyk, "Predicting arterial stiffness from the digital volume pulse waveform," IEEE Transactions on Biomedical Engineering, vol. 54, no. 12, pp. 2268-2275, 2007.
[2] T. Otsuka, T. Kawada, M. Katsumata, et al., "Independent Determinants of Second Derivative of the Finger Photoplethysmogram among Various Cardiovascular Risk Factors in Middle-Aged Men.," Hypertens Res, vol. 30, pp. 1211-1218, 2008.
[3] Junichiro Hashimoto, Daisuke Watabe, Atsushi Kimura, Hisaki Takahashi, Takayoshi Ohkubo, Kazuhito Totsune, Yutaka Imai, "Determinants of the second derivative of the finger photoplethysmogram and brachial-ankle pulse-wave velocity: The Ohasama study," American Journal of Hypertension, vol. 18, no. 4, pp. 477-485, 2005.
[4] L. A. Bortolotto, J. Blacher, T. Kondo, K. Takazawa, M. E. Safar,, "Assessment of vascular aging and atherosclerosis in hypertensive subjects: second derivative of photoplethysmogram versus pulse wave velocity," American Journal of Hypertension, vol. 13, no. 2, pp. 165-171, 2000.
[5] K. Takazawa, N. Tanaka, M. Fujita, O. Matsuoka, T. Saiki, M. Aikawa, S. Tamura, C. Ibukiyama, "Assessment of vasoactive agents and vascular aging by the second derivative of photoplethysmogram waveform," Hypertension, vol. 32, no. 2, pp. 365-370, 1998.
[6] "https://en.wikipedia.org/wiki/Electrocardiography," [Online].
[7] C.-H. Chen, "The Study of the Variation Trend Diastolic Pressure of the Surhical Patients utilizing Non-Invasive Plethysmohraphy Signal," National Sun Yat-sen University, 2004.
[8] J. Cho, H. J. Baek, "A Comparative Study of Brachial–Ankle Pulse Wave Velocity and Heart–Finger Pulse Wave Velocity in Korean Adults," Sensors, vol. 7, no. 20, 7 Apr 2020.
[9] A. Vehkaoja et al., "System for ECG and heart rate monitoring during group training,," 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC,, pp. 4832-4835, 2008.
[10] P. M. Mohan, A. A. Nisha, V. Nagarajan and E. S. J. Jothi, "Measurement of arterial oxygen saturation (SpO2) using PPG optical sensor,," 2016 International Conference on Communication and Signal Processing (ICCSP), Melmaruvathur,, pp. 1136-1140, 2016.
[11] R. Wang, W. Jia, Z. Mao, R. J. Sclabassi and M. Sun, "Cuff-free blood pressure estimation using pulse transit time and heart rate,," 2014 12th International Conference on Signal Processing (ICSP),Hangzhou, pp. 115-118, 2014.
[12] S. Puke, T. Suzuki, K. Nakayama, H. Tanaka, S. Minami, "Blood pressure estimation from pulse wave velocity measured on the chest," Conf Proc IEEE Eng Med Biol Soc. 2013, pp. 6107-6110, 2013.
[13] J. Pan and W. J. Tompkins, "A Real-Time QRS Detection Algorithm," in IEEE Transactions on Biomedical Engineering, Vols. BME-32, no. 3, pp. 230-236, 1985.
[14] G. Wang, M. Atef, and Y. Lian, "Towards a continuous noninvasive cuffless blood pressure monitoring system using PPG: systems and circuits review," IEEE Circuits and systems magazine, vol. 18, no. 3, pp. 6-26, 2018.
[15] Junichiro Hashimoto, Daisuke Watabe, Atsushi Kimura, Hisaki Takahashi, Takayoshi Ohkubo, Kazuhito Totsune, Yutaka Imai,, "Determinants of the second derivative of the finger photoplethysmogram and brachial-ankle pulse-wave velocity: The Ohasama study," American Journal of Hypertension, vol. 18, no. 4, pp. 477-485, 2005.
[16] C. H. Huang, et al., "Weighted pulse decomposition analysis of fingertip photoplethysmogram signals for blood pressure assessment," in Proc. of International Symposium on Circuits and Systems (ISCAS), 2020.
[17] H. Shin and S. D. Min,, "Feasibility study for the non-invasive blood pressure estimation based on ppg morphology: normotensive subject study," Biomed Eng Online, vol. 16, 2017.
[18] I. Khurana and A. Khurana, Medical Physiology for Undergraduate Students-E-book, Second Edition, Elsevier, 2018.
[19] M. Elgendi, "On the analysis of fingertip photoplethysmogram signals," Current Cardiology Reviews, vol. 8, pp. 14-25, 2012.
[20] M. Elgendi, "Optimal signal quality index for photoplethysmogram signals," Bioengineering, vol. 3, no. 4, p. 21, 2016.
[21] "https://en.wikipedia.org/wiki/Skewness," [Online].
[22] M.C. Baruch, D.ER Warburton, S.SD Bredin, et al., "Pulse decomposition analysis of the digital arterial pulse during hemorrhage simulation," Nonlinear Biomedicine Physics, vol. 5, pp. 1-1, 2011.
[23] R. Couceiro, et al., "Assessment of cardiovascular function from multi-Gaussian fitting of a finger photoplethysmogram," Physiological measurement, vol. 36, pp. 1801-1825, 2015.
[24] U. Rubins, "Finger and ear photoplethysmogram waveform analysis by fitting with Gaussians," Medical and Biological, vol. 46, no. 12, pp. 1271-1276, 2008.
[25] T. Tigges, et al., "Model selection for the pulse decomposition analysis of fingertip photoplethysmograms," in International conference of the IEEE engineering in medicine and biology society (EMBC), 2017.
[26] L. Wang, L. Xu, S. Feng, M. Q. H. Meng and K. Wang, "Multi-Gaussian fitting for pulse waveform using weighted least squares and multi-criteria decision making method," Computers in Biology and Medicine, vol. 43, pp. 1661-1672, 2013.
[27] Y. Liang et al., "Hypertension assessment via ECG and PPG signals: an evaluation using MIMIC database.," Diagnostics (Base), vol. 8, p. 65, 2018.
[28] T.R.Dawber,H.E.Thomas,P.M.McNamara,et al., "Characteristics of the dicrotic notch of the arterial pulse wave in coronary heart disease," Angiology, vol. 24, no. 4, pp. 244-255, 1973.
[29] P. Salvi, E. Magnani, F. Valbusa et al., "Comparative study of methodologies for pulse wave velocity estimation," J Hum Hypertens 22, vol. 22, pp. 669-677, 2008.
[30] D. Jang, U. Farooq, S. Park, C. Goh and M. Hahn, "A Knowledge-Based Approach to Arterial Stiffness Estimation Using the Digital Volume Pulse," in IEEE Transactions on Biomedical Circuits and Systems, vol. 6, no. 4, pp. 366-374, 2012.
[31] L Breiman, "Random Forests," Machine Learning, vol. 45, pp. 5-32, 2001.
[32] T. Hastie, R. Tibshirani, and J. Friedman., The Elements of Statistical Learning, second edition, New York: Springer, 2008.
[33] H. Tomiyama et al., "Influences of age and gender on results of noninvasive brachial/ankle pulse wave velocity measurement- a survey of 12 517 subjects," Atherosclerosis, vol. 166, no. 2, pp. 303-309, 2003.
[34] "Python API Reference -xgboost 1.2.0," [Online]. Available: https://xgboost.readthedocs.io/en/latest/index.html.
指導教授 蔡佩芸(Pei-Yun Tsai) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明