博碩士論文 107521014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:114 、訪客IP:3.143.235.212
姓名 范惠雯(Hui-Wen Fan)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以金屬奈米粒子調變P型鎂矽錫熱電材料之研究及模組製作
(Process Innovation and Module Development of P-type Mg2(Si,Sn) Thermoelectric Materials Modulated by Metal Nanoparticles)
相關論文
★ 以熱熔異質磊晶成長法製造之鍺光偵測器★ 在SOI基板上以快速熱熔法製造高品質鍺及近紅外線光偵測元件之研製
★ 鉭錳合金及銅鍺化合物應用於積體電路後段製程中銅導線之研究★ 快速熱熔磊晶成長法製造側向PIN(Ge-Ge-Si)光偵測器
★ 二維薄膜及三維塊材Seebeck係數量測★ 塊材、薄膜與奈米線之熱導係數量測方法探討
★ 以快速熱熔異質磊晶成長法製作鍺矽累增型光偵測器★ 以快速熱熔融磊晶成長法製作 鍺錫合金PIN型光偵測器
★ 利用火花電漿燒結法製備以矽為基底之奈米材料於熱電特性上之應用研究★ P型金屬氧化物薄膜的製備應用於軟性電子
★ 金屬氧化物製備應用於軟性電子元件★ 超導材料釔鋇銅氧化物熱電特性量測分析
★ 鎂矽錫合金熱電特性研究及應用★ 矽基熱電模組開發及特性研究
★ P型金屬氧化物與硫化物之研究★ 物聯網之熱感測器應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 近年來由於能源的需求被大幅提升,但同時能源枯竭以及氣候變遷的問題也越來越嚴重,因此發展可再生能源成為一個重要的議題,其中,使用熱電發電是近期被熱烈討論的一種再生能源。熱電材料可以藉由環境中的廢熱造成溫差產生電流,使電能與熱能可以直接互相轉換,此種發電方式不會產生噪音,不需要很大的空間,也不會排放碳汙染,因此是極具潛力的綠色能源。
本文研究了P型Mg2(Si,Sn)熱電材料。 我們的研究結果表明P型Mg2(Si,Sn)熱電材料的最佳製程參數是在800℃下燒結1小時,然後添加10% Mg在400℃下退火48小時。 Seebeck係數達到312μV/ K,熱電優值(ZT)的峰值為0.185。
將P型材料的最佳製程用於模組。製備了摻雜2at% Bi和10at% Mn5Si3的Mg_2 Si_0.4 Sn_0.6作為模組一的N型材料,摻雜10at% CeO2的In_2 O_3作為模組二的N型材料。兩個模組進行熱電性能的量測,最大輸出功率分別為1076.138 nW和234.95 nW。
摘要(英) In this thesis, P-type Mg2(Si,Sn) thermoelectric materials is investigated. Our research results show that best process parameters for the P-type Mg2(Si,Sn) thermoelectric materials were sintering at 800℃ for 1 hour and then 400℃ for 48 hours with 10% Mg additives. The Seebeck coefficient reached 312μV/K and a peak thermoelectric figure of merit (ZT) was 0.185.
The P-type material was used for a module according to the best process. Module 1 by Mg_2 Si_0.4 Sn_0.6 doped with 2at% Bi and 10at% Mn5Si3 as N-type materials and module 2 by In_2 O_3 doped with 10at% CeO2 as the N-type material were fabricated. The thermoelectric performance was measured and the maximum output power of two modules is 1076.138 nW and 234.95 nW, respectively.
關鍵字(中) ★ 鎂矽錫
★ 熱電材料
★ 熱電模組
★ 熱電優值
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 Ⅲ
目錄 IV
圖目錄 VII
表目錄 XI
第一章、緒論 1
1.1前言 1
1.2研究動機 2
第二章、基礎原理 4
2.1熱電效應 4
2.1.1 Seebeck effect 4
2.1.2 Peltier effect 5
2.1.3 Thomson effect 7
2.2熱電優值 8
2.3熱電模組 10
2.4熱電轉換效率 12
2.4.1 熱電發電 12
2.4.2 熱電致冷 13
2.4.3 熱電優值與轉換效率之關係 14
2.5熱電材料之應用 14
第三章、文獻回顧 16
3.1 〖Mg〗_2 (Si,Sn)之熱電材料 16
3.2 〖Mg〗_2 (Si,Sn)之製備方法 17
3.2.1 熔融法+退火(melting + annealing) 17
3.2.2 助熔劑法+火花電漿燒結 (flux synthesis method+SPS) 18
3.2.3 熔融紡絲+火花電漿燒結 (melt spinning+SPS) 19
第四章、實驗方法 21
4.1前言 21
4.2製程開發步驟 22
4.3 實驗流程 23
4.4 塊材製備 25
4.4.1 球磨矽粉 25
4.4.2 P-type矽粉摻雜 26
4.4.3摻雜銀奈米粒子 28
4.4.4 鎂、矽、錫、銀粉末混合 28
4.4.5冷壓成塊材 29
4.4.6以碳紙及鎳膠包覆試片 30
4.4.7高溫燒結 31
4.4.8高溫燒結之溫度調整 31
4.4.9化學劑量鎂之比例調整 32
4.4.10摻雜鉻奈米粒子 32
4.4.11高溫退火 32
4.5模組製作 33
第五章、量測儀器 35
5.1熱電特性量測 35
5.1.1電導率量測 35
5.1.2 Seebeck係數量測 36
5.1.3熱擴散量測 37
5.1.4比熱量測 38
5.1.5熱導率量測 38
5.2晶體結構分析 39
5.2.1掃描式電子顯微鏡(SEM) 39
5.2.2 X射線粉末繞射儀(XRD) 39
5.2.3密度量測 40
5.3模組電性量測 41
第六章、實驗結果與討論 43
6.1熱電特性量測 43
6.1.1電導率與Seebeck係數之量測 43
6.1.2熱導率量測 53
6.1.3功率因子與熱電優值 56
6.2試片結構分析 57
6.2.1高溫燒結與退火後之外觀 57
6.2.2 SEM表面分析 58
6.2.3 XRD成份分析 59
6.3可靠度測試 62
6.4模組電性分析 64
6.4.1模組一量測 64
6.4.2模組二量測 67
第七章、結論與未來展望 70
參考文獻 71
參考文獻 [1] K. F. Hsu, S. Loo, F. Guo, W. Chen, J. S. Dyck, C. Uher et al., "Cubic AgPbmSbTe2+ m: bulk thermoelectric materials with high figure of merit," Science, vol. 303, no. 5659, pp. 818-821, 2004.
[2] L. Hicks and M. S. Dresselhaus, "Effect of quantum-well structures on the thermoelectric figure of merit," Physical Review B, vol. 47, no. 19, p. 12727, 1993.
[3] W. Liu, K. Yin, Q. Zhang, C. Uher, and X. Tang, "Eco-friendly high-performance silicide thermoelectric materials," National Science Review, vol. 4, no. 4, pp. 611-626, 2017.
[4] 朱旭山, "熱電材料與元件之原理與應用," ed: 工業材料雜誌, 2005.
[5] D. M. Rowe, Thermoelectrics handbook: macro to nano. CRC press, 2018.
[6] R. Song, T. Aizawa, and J. Sun, "Synthesis of Mg2Si1− xSnx solid solutions as thermoelectric materials by bulk mechanical alloying and hot pressing," Materials Science and Engineering: B, vol. 136, no. 2-3, pp. 111-117, 2007.
[7] T. J. Seebeck, Magnetische polarisation der metalle und erze durch temperatur-differenz (no. 70). W. Engelmann, 1895.
[8] M.-J. Huang, R.-H. Yen, and A.-B. Wang, "The influence of the Thomson effect on the performance of a thermoelectric cooler," International Journal of Heat and Mass Transfer, vol. 48, no. 2, pp. 413-418, 2005.
[9] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee et al., "Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states," Science, vol. 321, no. 5888, pp. 554-557, 2008.
[10] G. J. Snyder and E. S. Toberer, "Complex thermoelectric materials," in materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group: World Scientific, 2011, pp. 101-110.
[11] C. Wood, "Materials for thermoelectric energy conversion," Reports on progress in physics, vol. 51, no. 4, p. 459, 1988.
[12] S. R. Brown, S. M. Kauzlarich, F. Gascoin, and G. J. Snyder, "Yb14MnSb11: New high efficiency thermoelectric material for power generation," Chemistry of materials, vol. 18, no. 7, pp. 1873-1877, 2006.
[13] X. Wang, H. Lee, Y. Lan, G. Zhu, G. Joshi, D. Wang et al., "Enhanced thermoelectric figure of merit in nanostructured n-type silicon germanium bulk alloy," Applied Physics Letters, vol. 93, no. 19, p. 193121, 2008.
[14] J. R. Szczech, J. M. Higgins, and S. Jin, "Enhancement of the thermoelectric properties in nanoscale and nanostructured materials," Journal of Materials Chemistry, vol. 21, no. 12, pp. 4037-4055, 2011.
[15] T. Zhu, Y. Liu, C. Fu, J. P. Heremans, J. G. Snyder, and X. Zhao, "Compromise and synergy in high‐efficiency thermoelectric materials," Advanced materials, vol. 29, no. 14, p. 1605884, 2017.
[16] 黃振東、徐振庭, "熱電材料," 科學發展, vol. 第486期, pp. 48-53, 2013.
[17] "Peltier Device Information Directory." http://www.peltier-info.com/info.html (accessed.
[18] 葉建弦, "固態熱電材料在廢熱回收領域之應用," 2014.
[19] G. H. Grosch and K.-J. Range, "Studies on AB2-type intermetallic compounds, I. Mg2Ge and Mg2Sn: single-crystal structure refinement and ab initio calculations," Journal of alloys and compounds, vol. 235, no. 2, pp. 250-255, 1996.
[20] Z. Zhou, Y. W. Chai, Y. Ikuta, Y. Lee, Y. Lin, and Y. Kimura, "Reduced Thermal Conductivity of Mg2 (Si, Sn) Solid Solutions by a Gradient Composition Layered Microstructure," ACS Applied Materials & Interfaces, vol. 12, no. 17, pp. 19547-19552, 2020.
[21] W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys," Applied Physics Letters, vol. 94, no. 10, p. 102111, 2009.
[22] X. Su, F. Fu, Y. Yan, G. Zheng, T. Liang, Q. Zhang et al., "Self-propagating high-temperature synthesis for compound thermoelectrics and new criterion for combustion processing," Nature communications, vol. 5, no. 1, pp. 1-7, 2014.
[23] T. Ikeda, L. Haviez, Y. Li, and G. J. Snyder, "Nanostructuring of thermoelectric Mg2Si via a nonequilibrium intermediate state," Small, vol. 8, no. 15, pp. 2350-2355, 2012.
[24] V. Zaitsev, M. Fedorov, E. Gurieva, I. Eremin, P. Konstantinov, A. Y. Samunin et al., "Highly effective Mg 2 Si 1− x Sn x thermoelectrics," Physical Review B, vol. 74, no. 4, p. 045207, 2006.
[25] P. Gao, X. Lu, I. Berkun, R. D. Schmidt, E. D. Case, and T. P. Hogan, "Reduced lattice thermal conductivity in Bi-doped Mg2Si0. 4Sn0. 6," Applied Physics Letters, vol. 105, no. 20, p. 202104, 2014.
[26] P. Gao, I. Berkun, R. D. Schmidt, M. F. Luzenski, X. Lu, P. B. Sarac et al., "Transport and mechanical properties of high-ZT Mg 2.08 Si 0.4− x Sn 0.6 Sb x thermoelectric materials," Journal of electronic materials, vol. 43, no. 6, pp. 1790-1803, 2014.
[27] X. Tang, Y. Zhang, Y. Zheng, K. Peng, T. Huang, X. Lu et al., "Improving thermoelectric performance of p-type Ag-doped Mg2Si0. 4Sn0. 6 prepared by unique melt spinning method," Applied Thermal Engineering, vol. 111, pp. 1396-1400, 2017.
[28] M.-K. Han, H. Ryu, and S.-J. Kim, "Effect of Chromium Doping on the Thermoelectric Properties of Bi 2 Te 3: Cr x Bi 2 Te 3 and Cr x Bi 2− x Te 3," Journal of electronic materials, vol. 42, no. 9, pp. 2758-2763, 2013.
[29] W. N. dos Santos, P. Mummery, and A. Wallwork, "Thermal diffusivity of polymers by the laser flash technique," Polymer testing, vol. 24, no. 5, pp. 628-634, 2005.
[30] P. Gill, T. T. Moghadam, and B. Ranjbar, "Differential scanning calorimetry techniques: applications in biology and nanoscience," Journal of biomolecular techniques: JBT, vol. 21, no. 4, p. 167, 2010.
[31] 羅聖全, "科學基礎研究之重要利器—掃瞄式電子顯微鏡(SEM)," 2013.
[32] A. A. Bunaciu, E. G. UdriŞTioiu, and H. Y. Aboul-Enein, "X-ray diffraction: instrumentation and applications," Critical reviews in analytical chemistry, vol. 45, no. 4, pp. 289-299, 2015.
[33] P. Roman and J. M. Gutierrez-Zorrilla, "A quick method for determining the density of single crystals," Journal of Chemical Education, vol. 62, no. 2, p. 167, 1985.
[34] H. Chen and N. Savvides, "Microstructure and thermoelectric properties of n-and p-type doped Mg 2 Sn compounds prepared by the modified bridgman method," Journal of electronic materials, vol. 38, no. 7, pp. 1056-1060, 2009.
[35] S. Kim, B. Wiendlocha, H. Jin, J. Tobola, and J. P. Heremans, "Electronic structure and thermoelectric properties of p-type Ag-doped Mg2Sn and Mg2Sn1-xSix (x= 0.05, 0.1)," Journal of Applied Physics, vol. 116, no. 15, p. 153706, 2014.
[36] N. Satyala and D. Vashaee, "Modeling of thermoelectric properties of magnesium silicide (Mg 2 Si)," Journal of electronic materials, vol. 41, no. 6, pp. 1785-1791, 2012.
指導教授 辛正倫(Cheng-Lun Hsin) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明