博碩士論文 106521605 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:18.223.210.20
姓名 王晟(Sheng Wang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 具備全極化與全方向性之立體整流天線之研究
(Research on 3D Rectenna with All-polarization and Omnidirectional Capacity)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-20以後開放)
摘要(中) 現代微波傳能系統中,高效的整流天線是不可或缺的元件,由於物聯網對中長距離無線傳能的需求,促使我們研究微波整流天線。本論文主要針對天線設計、微波整流器以及微波整流天線全極化性以及全方向性的實現之研究。第二章闡述了一個超寬矩形貼片天線及其1×2陣列之分析、設計及量測結果,為了實現全極化,文章最後提出了一個雙線性極化天線,及其設計與量測結果。第三章為帶有帶止結構之微波整流器及其陣列之電路設計與量測結果。最後,第四章呈現一個具備全極化及全向性的立體整流天線。
第二章介紹矩形貼片天線結構及設計原理,並且提出超寬矩形貼片天線的設計,其天線增益為8.6 dBi,相當於1×2矩形貼片天線陣列。接著介紹天線陣列的設計原理,並以此設計1×2超寬矩形貼片天線,其天線增益為11.2 dBi,相當於2×2矩形貼片天線陣列。最後提出並設計了一個雙線性極化天線,可以在接收任意極化方向的線性極化波時,都能保持較高的接收效率。
第三章為微波整流器之設計分析,介紹其理論模型架構,引入源極牽引的概念並利用ADS軟體進行模擬分析,能夠有效率地最佳化整流器的整流效率。接著根據前文的分析方法,設計實現一個帶有帶止結構(八分之一短路傳輸線)的整流器,並利用源極牽引分析比較有無短路傳輸線之等效率圓。其具有較高整流效率以及動態範圍,整流效率在輸入功率為8 dBm,操作頻率在2.45 GHz時達到峰值72%,動態範圍為13.8 dB。最後提出並設計了一個整流器陣列,該陣列輸入端利用一個枝幹耦合器來重新分配能量給兩個子整流器,以此提高整流電路整體的整流效率、動態範圍以及頻寬,整流效率在輸入功率為11 dBm,操作頻率在2.45 GHz時達到峰值75.7%,動態範圍為17.6 dB。
第四章提出一個具有全極化與全方向性之立體整流天線,藉由多個全極化整流天線組成的多面體結構。全極化整流天線包括雙線性整流天線、枝幹耦合器及兩個整流器,相較於傳統雙線性整流天線,該設計能夠在不同的極化方向角度差,保持較高的整體效率,實現真正意義上的全極化。接著,以全極化整流天線為單元引入數學模型,以分析比較在發射端不同方位下,單面、三面體、四面體以及六面體的能量獲取表現,可以看出面數越多,直流能量大小隨方位變化越小。數學模型與實驗結果相互驗證,量測環境(待測天線平面)的功率密度能量為355 mW/cm2,方位角範圍由0°到360°,單一整流天線的輸出直流能量為0.8到2.33 mW,六面體整流天線的輸出直流能量為1.7到2.85 mW。
摘要(英) In modern microwave power transmitting system, a high efficient rectenna is an essential building block. Since the demand for mid- (or long-) range wireless power transmitting in IoTs, we were driven to investigate microwave rectenna. This thesis focuses on the antenna, microwave rectifier and 3D rectenna with all-polarized and omnidirectional capacity. Analysis, design and measured results for 5.8 GHz ultra-width patch antenna and array are proposed in Chapter 2, meanwhile, a 2.45 GHz dual-linear polarized antenna is present. Analysis, design and measured results for the microwave rectifier with band stop structure and array are proposed in Chapter 3. Finally, a 3D rectenna with all-polarized and omnidirectional capacity is proposed in Chapter 4.
Patch antenna theory is introduced in Chapter 2. An ultra-width patch antenna is present, features an antenna gain of 8.6 dBi, amount to the gain of 1×2 conventional patch antenna array. Antenna array theory is introduced, and an 1×2 ultra-width patch antenna array is present, features an antenna gain of 11.2 dBi, amount to the gain of 2×2 conventional patch antenna array. Finally, a dual-linear polarized antenna is present and designed. It can maintain high receiving efficiency regardless of polarization mismatching.
Design and analysis of microwave rectifier is introduced in Chapter 3, including the theoretical model, transfer functions and models using ADS (advance design system) software with source-pull analysis for optimization of efficiency. A modifier rectifier with band-stop structure (eighth length short-ended transmission line) is present, source-pull analysis is introduced for analyzing constant efficiency contour with or without short-ended transmission line. The modifier rectifier attains a peak RF-to-DC PCE (Power conversion efficiency) of 72% when the input power in 8 dBm, and a dynamic range of 13.8 dB. Finally, a rectifier array based on modified rectifier is present. A branch-line coupler is introduced for power redistribution to improve PCE, dynamic range and bandwidth. The rectifier array attains a peak RF-to-DC PCE of 75.7% when the input power in 11 dBm, and a dynamic range of 17.6 dB.
In Chapter 4, we proposed a 3D rectenna with all-polarized and omnidirectional capacity for IoT applications. The proposed rectenna is composed of six dual-linear polarized (DLP) rectennas, in a hexahedron. Each DLP cell is composed of a DLP antenna, a 90° hybrid, and a modified rectifier. The 90° hybrid, and a modified rectifier are employed to reallocate received powers between two ports of DLP antenna, and the topology can maintain high RF-to-DC PCE when the polarization of incident wave is uncertain or varying.
Mathematical equivalent model is introduced to analyze 3D rectennas in trihedron, tetrahedron and hexahedron. The 3D rectenna can harvest RF power all round efficiently. With a measured power density of 355 μW/cm2, the output dc power maintains above 1.7 mW when the tile angle varies from 0° to 360° perpendicular to the surface of rectenna, and the maximum dc power is 2.8 mW.
關鍵字(中) ★ 射頻能量採集
★ 微波整流天線
關鍵字(英) ★ RF energy harvesting
★ Microwave rectenna
論文目次 摘要 I
Abstract III
目錄 V
圖目錄 VIII
表目錄 XII
第 1 章 緒論 1
1.1 研究背景及動機 1
1.2 現況研究及發展 2
1.3 貢獻 3
1.4 論文架構 4
第 2 章 超寬矩形貼片天線與雙線性極化天線設計 5
2.1 簡介 5
2.2 矩形貼片天線設計原理 8
2.3 超寬矩形貼片天線 (Ultra-width Patch Antenna) 12
2.3.1. 天線設計 12
2.3.2. 量測與分析 15
2.4 天線陣列設計原理 19
2.5 超寬矩形貼片天線陣列 21
2.5.1 天線設計 21
2.5.2 量測與分析 22
2.6 雙線性極化天線 26
2.6.1 天線極化方向簡介 26
2.6.2 天線設計與分析 27
2.6.3 量測與分析 30
2.7 結論 33
第 3 章 微波整流器 34
3.1 簡介 34
3.2 電路設計與分析 35
3.2.1 二極體分析 36
3.2.2 源極牽引分析 39
3.3 一般性的整流器分析 42
3.3.1 整流器分析 42
3.3.2 一般性整流器設計 42
3.4 串聯帶止結構之整流器 45
3.4.1 電路介紹 45
3.4.2 設計與分析 45
3.4.3 模擬與量測 48
3.5 寬動態範圍之整流器陣列設計 55
3.5.1 電路介紹 55
3.5.2 設計與分析 56
3.5.3 模擬與量測 57
3.6 總結 60
第 4 章 微波整流天線 62
4.1 简介 62
4.2 線性極化之整流天線 63
4.2.1. 簡介 63
4.2.2. 電路設計與分析 64
4.2.3. 功率能量密度 65
4.2.4. 量測與實驗 65
4.3 雙線性極化之整流天線 67
4.3.1. 簡介 67
4.3.2. 電路設計與分析 68
4.3.3. 量測與實驗 71
4.4 具備全向性之立體整流天線 73
4.4.1. 簡介 73
4.4.2. 電路設計與分析 73
4.4.3. 量測與討論 81
4.5 總結 85
第 5 章 結論 87
參考文獻 89
參考文獻 [1] L. Davoli, L. Belli, and A. Cilfone, ‘‘From micro to macro IoT: Challenges and solutions in the integration of IEEE 802.15.4/802.11 and SubGHz technologies,’’ IEEE Internet Things J., vol. 5, no. 2, pp. 784–793, Apr. 2018, doi: 10.1109/JIOT.2017.2747900.
[2] A. Costanzo and D. Masotti, ‘‘Energizing 5G: Near- and far-field wireless energy and data trantransfer as an enabling technology for the 5G IoT,’’ IEEE Microw. Mag., vol. 18, no. 3, pp. 125–136, May 2017.
[3] A. Zanella, N. Bui, A. Castellani, L. Vangelista, and M. Zorzi, ‘‘Internet of Things for smart cities,’’ IEEE Internet Things J., vol. 1, no. 1, pp. 22–32, Feb. 2014.
[4] O. Georgiou, K. Mimis, D. Halls, W. H. Thompson, and D. Gibbins, ‘‘How many Wi-Fi APs does it take to light a Lightbulb?’’ IEEE Access, vol. 4, pp. 3732–3746, Aug. 2016.
[5] K. Niotaki, A. Collado, A. Georgiadis, S. Kim, and M. M. Tentzeris, ‘‘Solar/electromagnetic energy harvesting and wireless power transmission,’’ Proc. IEEE, vol. 102, no. 11, pp. 1712–1722, Nov. 2014.
[6] K. Kotani and T. Ito, “High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs,” in IEEE Asian Solid-State Circuits Conf., Nov. 2007, pp. 119–122.
[7] K. Kotani, A. Sasaki, and T. Ito, “High-efficiency differential-drive CMOS rectifier for UHF RFIDs,” IEEE J. Solid-State Circuits, vol. 44, no. 11, pp. 3011–3018, Nov. 2009.
[8] K.-H. Chen, J.-H. Lu, and S.-I. Liu, “A 2.4 GHz efficiency-enhanced rectifier for wireless telemetry,” in IEEE Custom Integr. Circuits Conf., Sep. 2007, pp. 555–558.
[9] J. Pandey, Y.-T. Liao, A. Lingley, R. Mirjalili, B. Parviz, and B. Otis, “A fully integrated RF-powered contact lens with a single element display,” IEEE Trans. Biomed. Circuits Syst., vol. 4, no. 6, pp. 454–461, Dec. 2010.
[10] J. Masuch, M. Delgado-Restituto, D. Milosevic, and P. Baltus, “Co-integration of an RF energy harvester into a 2.4 GHz transceiver,” IEEE J. Solid-State Circuits, vol. 48, no. 7, pp. 1565–1574, Jul. 2013.
[11] C.-J. Li and T.-C. Lee, “2.4-GHz high-efficiency adaptive power,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 22, no. 2, pp. 434–438, Feb. 2014.
[12] W. Lerdsitsomboon and K. Kenneth, “Technique for integration of a wireless switch in a 2.4 GHz single chip radio,” IEEE J. Solid-State Circuits, vol. 46, no. 2, pp. 368–377, Feb. 2011.
[13] S. Abdelhalem, P. Gudem, and L. Larson, “An RF–DC converter with wide-dynamic-range input matching for power recovery applications,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 60, no. 6, pp. 336–340, Jun. 2013.
[14] J. Guo, H. Zhang, and X. Zhu, “Theoretical analysis of RF–DC conversion efficiency for class-F rectifiers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 977–985, Apr. 2014.
[15] H. Takhedmit et al., “A 2.45-GHz low cost and efficient rectenna,” in Proc. 4th Eur. Conf. Antennas Propag., Apr. 2010, pp. 1–5.
[16] J. Guo and X. Zhu, “An improved analytical model for RF–DC conversion efficiency in microwave rectifiers,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
[17] T. Hoang, A. Douyere, J.-L. Dubard, and J.-D. Luk, “TLM design of a compact PIFA rectenna,” in Int. Electromagn. Adv. Appl. Conf., Sep. 2011, pp. 508–511.
[18] H. Takhedmit et al., “A 2.45-GHz dual-diode RF-to-dc rectifier for rectenna applications,” in Eur. Microw. Conf., Sep. 2010, pp. 37–40.
[19] M. Ruiz, R. Marante, and J. A. Garcia, “A class E synchronous rectifier based on an E-pHEMT device for wireless powering applications,” in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2012, pp. 1–3.
[20] S. Abbasian and T. Johnson, “High efficiency GaN HEMT class-F synchronous rectifier for wireless applications,” IEICE Electron. Exp., vol. 12, no. 1, pp. 1–11, 2015.
[21] S. Yoshida et al., “The C-band MPT rectifier using a HEMT without bonding-wire connection for a space health monitoring system,” in IEEE Wireless Power Transfer Conf., May 2013, pp. 163–166.
[22] Yujie Zhang, Shanpu Shen, Chi Yuk Chiu and Ross Murch, “Hybrid RF-Solar Energy Harvesting Systems Utilizing Transparent Multiport Micromeshed Antennas,” IEEE Trans. Microw. Theory Tech., vol.67, no.11, pp. 4534–4546 Nov. 2019.
[23] Mariana Siniscalchi, Agustina Pieruccioni, Federico Vanzini, Linder Reyes, and Leonardo Barboni, “Schottky Diode Assessment for Implementing a Rectenna for Radio-Triggered Wireless Sensor Networks,” IEEE Microw. Wireless Lett., vol.27, no.8, pp. 763–765, Aug. 2017.
[24] E.R. Brown, A.C. Young, J. Zimmerman, H. Kazemi, and A.C. Gossard. “Advances in Schottky Rectifier Performance,” IEEE Microw. Magazine, vol.8, no.3, pp. 54–59, Jun. 2007.
[25] Bernd Strassner and Kai Chang, “Microwave Power Transmission: Historical Milestones and System Components,” Proceeding of the IEEE, vol.101, no.6, pp. 1379–1396, Jun. 2013.
[26] K. Chang, RF and Microwave Wireless Systems, John Wiley & Sons, 2000.
[27] Constantine A. Balanis, Antenna Theory, 3rd ed. John Wiley & Sons, 2005.
[28] M. S. Rabbani and H. Ghafouri-Shiraz, “Size improvement of rectangular microstrip patch antenna at MM-wave and terahertz frequencies,” in Microwave and Optical Technology Letters 57, no. 11 (2015): 2585-258937
[29] D. M. Pozar, “Microstrip antenna aperture-coupled to a microstripline,” Electron. Lett., vol. 21, no. 2, pp. 49–50, Jan. 1985.
[30] D. M. Pozar and S. D. Targonski, “Improved coupling for aperture-coupled microstrip antennas,” Electron. Lett., vol. 27, no. 13, pp.1129-1131, Jun. 1991.
[31] J. Guo, H. Zhang, and X. Zhu, “Theoretical analysis of RF-DC conversion efficiency for class-F rectifiers,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 977–985, Apr. 2014.
[32] S. Abbasian and T. Johnson, “Power-efficiency characteristics of class-F and inverse class-F synchronous rectifiers,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 12, pp. 4740–4751, Dec. 2016.
[33] S. Ladan and K. Wu, “Nonlinear modeling and harmonic recycling of millimeter-wave rectifier circuit,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 3, pp. 937–944, Mar. 2015.
[34] J. Kimionis, A. Collado, M. M. Tentzeris, and A. Georgiadis, “Octave and decade printed UWB rectifiers based on nonuniform transmission lines for energy harvesting,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 11, pp. 4326–4334, Nov. 2017.
[35] V. Kuhn, C. Lahuec, F. Seguin, and C. Person, “A multi-band stacked RF energy harvester with RF-to-DC efficiency up to 84%,” IEEE Trans. Microw. Theory Techn., vol. 63, no. 5, pp. 1768–1778, May 2015.
[36] P. Lu, X. S. Yang, J. L. Li, and B. Z. Wang, “A compact frequency reconfigurable rectenna for 5.2- and 5.8-GHz wireless power transmission,” IEEE Trans. Power Electron., vol. 30, no. 11, pp. 6006–6010,Nov. 2015.
[37] James O. McSpadden, Lu Fan, and Kai Chang, “Design and Experiments of a High-Conversion-Efficiency 5.8-GHz Rectenna,” IEEE Trans. Microw. Theory Tech., vol.46, no.12, 2053-2060 Dec. 1998.
[38] “Surface Mount Microwave Schottky Detector Diodes, Avago HSMS 286x series, SOT363 package,” Broadcom Inc., San Jose, CA, 2009.
[39] “Surface Mount Microwave Schottky Detector Diodes, Avago HSMS 282x series, SOT363 package,” Broadcom Inc., San Jose, CA, 2014.
[40] Erez Falkenstein, Michael Roberg and Zoya Popović, “Low-Power Wireless Power Delivery”, IEEE Trans. Microw. Theory Tech., vol.60, no.7, 2277-2285, Jul. 2012.
[41] C. Liu, F. Tan, H. Zhang, and Q. He, “A Novel Single-Diode Microwave Rectifier with a Series Band-Stop Structure,” IEEE Trans. on Microw. Theory and Techn., vol. 65, no. 2, pp. 600–606, Feb. 2017.
[42] “Multilayer Ceramic Chip Capacitors,” TDK Electronics Co., Ltd, Apr. 2013.
[43] X. Wang and A. Mortazawi, “Rectifier array with adaptive power distribution for wide dynamic range RF-DC conversion,” IEEE Trans. Microw. Theory Techn., vol. 67, no. 1, pp. 392–401, Jan. 2019.
[44] Hao Zhang,Yong-Xin Guo,Zheng Zhong, and Wen Wu, “Cooperative Integration of RF Energy Harvesting and Dedicated WPT for Wireless Sensor Networks,” IEEE Microw. Wireless Compon. Lett., vol.29, no.4, Apr. 2019.
[45] Shao Yong Zheng, Shui Hong Wang, Kwok Wa Leung, Wing Shing Chan, and Ming Hua Xia, “A High-Efficiency Rectifier With Ultra-Wide Input Power Range Based on Cooperative Structure,” IEEE Trans. Microw. Theory Techn., 2019 (Early Access).
[46] Xiu Yin Zhang, Zhi-Xia Du, and Quan Xue, “High-Efficiency Broadband Rectifier with Wide Ranges of Input Power and Output Load Based on Branch-Line Coupler,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 64, no. 3, pp. 731–739, Mar. 2017.
[47] Pengde Wu, Xiaojie Chen, Hang Lin, Changjun Liu, “High-Efficiency Rectifier with Wide Input Power Rage Based on a Small Capacitor in Parallel with the Diode,” IEEE MTT-S International Microwave Symposium Digest, Boston, MA, USA, June 2019, pp. 1316-1319.
[48] Q. W. Lin and X. Y. Zhang, “Differential rectifier using resistance compression network for improving efficiency over extended input power range,” IEEE Trans. Microw. Theory Techn., vol. 64, no. 9, pp. 2943–2954, Sep. 2016.
[49] H. Zhang, S. Gao, W. Wu, and Y.-X. Guo, “Uneven-to-even power distribution for maintaining high efficiency of dual-linearly polarized rectenna,” IEEE Microw. Wireless Compon. Lett., vol. 28, no. 12, pp. 1119–1121, Dec. 2018.
[50] S. K. Khang, J. W. Yu, and W. S. Lee, “Compact folded dipole rectenna with RF-based energy harvesting for IoT smart sensors,” Electron. Lett., vol. 51, pp. 926–928, Jun. 2015.
[51] Ana Collado, and Apostolos Georgiadis, “Conformal Hybrid Solar and Electromagnetic (EM) Energy Harvesting Rectenna,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 60, no. 8, pp. 2225–2234, Aug. 2013.
[52] Nobuyuki Takabayashi, Naoki Shinohara, Tomohiko Mitani, Minoru Furukawa, and Teruo Fujiwara, “Rectification Improvement with Flat-Topped Beams on 2.45-GHz Rectenna Arrays,” IEEE Trans. Microw. Theory Techn., vol. 68, no. 3, pp. 1151–1163, Mar. 2016.
[53] Gianfranco Andia Vera, Shankar D. Nawale, Yvan Duroc, and Smail Tedjini, “Read Range Enhancement by Harmonic Energy Harvesting in Passive UHF RFID,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 9, pp. 627–629, Sep. 2015.
[54] Tomohiko Mitani, Shogo Kawashima, and Taiga Nishimura, “Analysis of Voltage Doubler Behavior of 2.45-GHz Voltage Doubler-Type Rectenna,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 4, pp. 1051–1057, Apr. 2017.
[55] Zoya Popović, Sean Korhummel, Steven Dunbar, Robert Scheeler, Arseny Dolgov, Regan Zane, Erez Falkenstein, and Joseph Hagerty, “Scalable RF Energy Harvesting,” IEEE Trans. Microw. Theory Techn., vol. 62, no. 4, pp. 1046–1056, Apr. 2014.
[56] Miaowang Zeng, Andrey S. Andrenko, Xianluo Liu, Zihong Li, and Hong-Zhou Tan, “A Compact Fractal Loop Rectenna for RF Energy Harvesting,” IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 2424–2426, 2017.
[57] H. Sun and W. Geyi, “A new Rectenna with all-polarization-receiving capability for wireless power transmission,” IEEE Antennas Wireless Propag. Lett., vol. 15, pp. 814–817, 2016.
[58] H. Sun and W. Geyi, ‘‘A new rectenna using beamwidth-enhanced antenna array for RF power harvesting applications,’’ IEEE Antennas Wireless Propag. Lett., vol. 16, pp. 1451–1454, 2016.
[59] R.-C. Kuo, P. Riehl, A. Satyamoorthy, W. Plumb, P. Tustin, and J. Lin, “A 3D resonant wireless charger for a wearable device and a mobile phone,” in Proc. IEEE Wireless Power Transfer Conf., Boulder, CO, USA, 2015, pp. 1–3.
[60] Dong-Jin Lee, Soo-Ji Lee, In-June Hwang, Wang-Sang Lee, “Hybrid Power Combining Rectenna Array for Wide Incident Angle Coverage in RF Energy Transfer,” IEEE Trans. Microw. Theory Techn., vol. 65, no. 9, pp. 3409–3418, Sep. 2017.
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明