博碩士論文 106521131 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:25 、訪客IP:3.145.32.233
姓名 楊景聿(Jing-Yu Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於深度學習自動偵測缺血性中風於電腦斷層影像
(Automated Infarct Detection in Computed Tomography Imaging Based on Deep Learning)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,腦血管疾病居於台灣十大死因之列,因此腦血管疾病的醫療已成為社會的主要負擔。雖然預防和治療高血壓能有效降低腦血管疾病的發生,但其高死亡率和致殘率仍是台灣與全世界許多國家的醫療問題。本論文探討急性腦梗塞中風患者之電腦斷層影像(Computed Tomography)上梗塞區域的偵測,目前大部分的醫院都使用軟體輔助之半自動分割腦梗塞區域,處理與分析耗時過久且較容易產生不同量測者之偏差。大部分的軟體也都是運用在拍攝時間較久且成本較高核磁共振影像(Magnetic Resonance Imaging)上,且現在大部分發表有關電腦斷層掃描影像上病灶偵測的論文及技術都只侷限於分類影像是否有缺血性梗塞的病灶,而無法確切地找出病灶的位置,本論文的方法利用了影像對位處理、影像像素處理以及T分數統計的方式在病人與健康電腦斷層影像的特性發展新穎的腦梗塞區域偵測的方法當作預前處理,再運用深度學習的技術,能準確的偵測出病灶在CT影像上的所在位置。本論文同時也運用 MATLAB 製作了圖形使用者介面,讓此方法能在臨床上更有效率的幫助醫師在電腦斷層影像上的診斷。
摘要(英) In recent years, cerebrovascular diseases have been among the top ten causes of death in Taiwan, so the medical treatment of cerebrovascular diseases has become the main burden of society. The prevention and treatment of hypertension can effectively reduce the occurrence of cerebrovascular diseases but its high mortality rate and disability rate are still a serious medical problem in many countries.
This paper investigates the detection of infarcted areas on computed tomography (Computed Tomography) in patients with acute cerebral infarction. Currently, most of the software is used in time-consuming and high-cost magnetic resonance imaging (Magnetic Resonance Imaging), and most of the papers and techniques which published about detection of lesions on computed tomography images are limited to classified images. However, the location of the lesion cannot be accurately identified. The method of this paper uses image alignment processing, image pixel processing and T score statistical methods to develop a new cerebral infarction area detection method in the characteristics of patient and healthy computerized tomographic images as preprocessing, and then use deep learning techniques to accurately detect the location of the lesion on the CT image. Besides, we also designed a graphical user interface by using MATLAB to help doctors diagnose the computed tomography image more effectively and accurately.
關鍵字(中) ★ 電腦斷層影像
★ 深度學習
★ 卷積神經網路
★ 腦血管梗塞
關鍵字(英) ★ computed tomography
★ deep learning
★ convolutional neural network
★ cerebral infarction
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Contents iv
List of Figures v
List of Tables x
CHAPTER 1: Introduction 1
1.1 Brain stroke 1
1.1.1 Ischemic stroke 1
1.1.2 Hemorrhagic stroke 2
1.2 Computed Tomography (CT) 2
1.3 Organization of this dissertation 4
CHAPTER 2: Motivation and Literature Review 5
2.1 Motivation 5
2.2 Literature Review 6
CHAPTER 3: Materials and Methods 9
3.1 Dataset Description 9
3.2 Ischemic Stroke Detection Procedure 13
3.2.1 CT Image Preprocessing 13
3.2.2 Automated Ischemic Stroke Detection 27
CHAPTER 4: Experimental Results 47
4.1 Training and Testing Results 47
4.2 Results of Detecting Actual Infarctions 50
CHAPTER 5: Graphical User Interface 61
CHAPTER 6: Conclusions and Future Works 69
6.1 Discussion 69
6.2 Conclusions 70
6.3 Future Works 71
References 72
參考文獻 [1] Wikipedia contributors. "Stroke." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Stroke&oldid=916316408 (accessed 20 September 2019 06:55 UTC.
[2] M. Katan and A. Luft, "Global burden of stroke," in Seminars in neurology, 2018, vol. 38, no. 02: Thieme Medical Publishers, pp. 208-211.
[3] Wikipedia contributors. "Ischemic cascade." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Ischemic_cascade&oldid=841627282 (accessed 20 September 2019 07:11 UTC.
[4] B. Wu. "What′s to know about hemorrhagic stroke?" https://www.medicalnewstoday.com/articles/317111.php (accessed.
[5] W. A. Kalender, "X-ray computed tomography," Physics in Medicine & Biology, vol. 51, no. 13, p. R29, 2006.
[6] C. R. Gillebert, G. W. Humphreys, and D. Mantini, "Automated delineation of stroke lesions using brain CT images," Neuroimage Clin, vol. 4, pp. 540-8, 2014, doi: 10.1016/j.nicl.2014.03.009.
[7] M. Charles Patrick Davis, PhD. "CT Scan vs. MRI Differences between Machines, Costs, Uses." https://www.medicinenet.com/ct_scan_vs_mri/article.htm (accessed.
[8] T. Truelsen, S. Begg, and C. Mathers, "The global burden of cerebrovascular."
[9] W. G. Members et al., "Executive summary: heart disease and stroke statistics—2010 update: a report from the American Heart Association," Circulation, vol. 121, no. 7, pp. 948-954, 2010.
[10] S. Luo, Q. Hu, X. He, J. Li, J. S. Jin, and M. Park, "Automatic liver parenchyma segmentation from abdominal CT images using support vector machines," in 2009 ICME International Conference on Complex Medical Engineering, 2009: IEEE, pp. 1-5.
[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, "Imagenet classification with deep convolutional neural networks," in Advances in neural information processing systems, 2012, pp. 1097-1105.
[12] A. Ušinskas, R. A. Dobrovolskis, and B. F. Tomandl, "Ischemic stroke segmentation on CT images using joint features," Informatica, vol. 15, no. 2, pp. 283-290, 2004.
[13] T. Chan, "Computer aided detection of small acute intracranial hemorrhage on computer tomography of brain," Computerized Medical Imaging and Graphics, vol. 31, no. 4-5, pp. 285-298, 2007.
[14] T. Mroczek, J. Grzymała-Busse, Z. Hippe, and P. Jurczak, "A machine learning approach to mining brain stroke data," in Human–Computer Systems Interaction: Backgrounds and Applications 2: Springer, 2012, pp. 147-158.
[15] M. Al-Ayyoub, D. Alawad, K. Al-Darabsah, and I. Aljarrah, "Automatic detection and classification of brain hemorrhages," WSEAS transactions on computers, vol. 12, no. 10, pp. 395-405, 2013.
[16] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I. H. Witten, "The WEKA data mining software: an update," ACM SIGKDD explorations newsletter, vol. 11, no. 1, pp. 10-18, 2009.
[17] C. R. Gillebert, G. W. Humphreys, and D. Mantini, "Automated delineation of stroke lesions using brain CT images," NeuroImage: Clinical, vol. 4, pp. 540-548, 2014.
[18] D. Guo et al., "Automated lesion detection on MRI scans using combined unsupervised and supervised methods," BMC medical imaging, vol. 15, no. 1, p. 50, 2015.
[19] O. Maier, M. Wilms, J. von der Gablentz, U. Krämer, and H. Handels, "Ischemic stroke lesion segmentation in multi-spectral MR images with support vector machine classifiers," in Medical Imaging 2014: Computer-Aided Diagnosis, 2014, vol. 9035: International Society for Optics and Photonics, p. 903504.
[20] J. Marbun and U. Andayani, "Classification of stroke disease using convolutional neural network," in Journal of Physics: Conference Series, 2018, vol. 978, no. 1: IOP Publishing, p. 012092.
[21] Wikipedia contributors. "Dicom." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=DICOM&oldid=916336690 (accessed 24 September 2019 05:57 UTC.
[22] J. Ashburner et al., "SPM8 manual," Functional Imaging Laboratory, Institute of Neurology, 2012.
[23] Wikipedia contributors. "Neuroimaging Informatics Technology Initiative." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Neuroimaging_Informatics_Technology_Initiative&oldid=914881783 (accessed 25 September 2019 13:11 UTC.
[24] M. Brett, I. S. Johnsrude, and A. M. Owen, "The problem of functional localization in the human brain," Nature Reviews Neuroscience, vol. 3, no. 3, pp. 243-249, 2002/03/01 2002, doi: 10.1038/nrn756.
[25] J. Ashburner and K. J. Friston, "Spatial normalization using basis functions," Human brain function, vol. 2, 2003.
[26] B. H. Ana Saraiva, "Coregistration and Spatial Normalisation Slides," 2010. [Online]. Available: https://www.fil.ion.ucl.ac.uk/spm/course/slides08-zurich/.
[27] G. N. Hounsfield, "Computed medical imaging," Medical physics, vol. 7, no. 4, pp. 283-290, 1980.
[28] C. Rorden, L. Bonilha, J. Fridriksson, B. Bender, and H.-O. Karnath, "Age-specific CT and MRI templates for spatial normalization," Neuroimage, vol. 61, no. 4, pp. 957-965, 2012.
[29] E. A. Stamatakis and L. K. Tyler, "Identifying lesions on structural brain images—validation of the method and application to neuropsychological patients," Brain and language, vol. 94, no. 2, pp. 167-177, 2005.
[30] J. R. Crawford, P. H. Garthwaite, and D. C. Howell, "On comparing a single case with a control sample: an alternative perspective," Neuropsychologia, vol. 47, no. 13, pp. 2690-2695, 2009.
[31] Wikipedia contributors. "Brodmann area." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Brodmann_area&oldid=893347554 (accessed 3 October 2019 07:02 UTC.
[32] S. C. Wong, A. Gatt, V. Stamatescu, and M. D. McDonnell, "Understanding data augmentation for classification: when to warp?," in 2016 international conference on digital image computing: techniques and applications (DICTA), 2016: IEEE, pp. 1-6.
[33] P. Y. Simard, D. Steinkraus, and J. C. Platt, "Best practices for convolutional neural networks applied to visual document analysis," in Icdar, 2003, vol. 3, no. 2003.
[34] M. D. Zeiler and R. Fergus, "Visualizing and understanding convolutional networks," in European conference on computer vision, 2014: Springer, pp. 818-833.
[35] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by reducing internal covariate shift," arXiv preprint arXiv:1502.03167, 2015.
[36] A. F. Agarap, "Deep learning using rectified linear units (relu)," arXiv preprint arXiv:1803.08375, 2018.
[37] D. Scherer, A. Müller, and S. Behnke, "Evaluation of pooling operations in convolutional architectures for object recognition," in International conference on artificial neural networks, 2010: Springer, pp. 92-101.
[38] S. Basha, S. R. Dubey, V. Pulabaigari, and S. Mukherjee, "Impact of Fully Connected Layers on Performance of Convolutional Neural Networks for Image Classification," arXiv preprint arXiv:1902.02771, 2019.
[39] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, "Dropout: a simple way to prevent neural networks from overfitting," The journal of machine learning research, vol. 15, no. 1, pp. 1929-1958, 2014.
[40] K. Duan, S. S. Keerthi, W. Chu, S. K. Shevade, and A. N. Poo, "Multi-category classification by soft-max combination of binary classifiers," in International Workshop on Multiple Classifier Systems, 2003: Springer, pp. 125-134.
[41] Wikipedia contributors. "Confusion matrix." Wikipedia, The Free Encyclopedia. https://en.wikipedia.org/w/index.php?title=Confusion_matrix&oldid=917379134 (accessed 15 October 2019 08:26 UTC.
[42] K. Brodmann, Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, 1909.
[43] K. Amunts and K. Zilles, "Architectonic mapping of the human brain beyond Brodmann," Neuron, vol. 88, no. 6, pp. 1086-1107, 2015.
[44] J. Zhang, "Secrets of the Brain: An Introduction to the Brain Anatomical Structure and Biological Function," arXiv preprint arXiv:1906.03314, 2019.
[45] Wikimedia Commons contributors. "File:1307 Brodmann Areas.jpg." Wikimedia Commons, the free media repository. https://commons.wikimedia.org/w/index.php?title=File:1307_Brodmann_Areas.jpg&oldid=269244645 (accessed 18 October 2019 06:46 UTC.
[46] I. A. L. Lim et al., "Human brain atlas for automated region of interest selection in quantitative susceptibility mapping: application to determine iron content in deep gray matter structures," Neuroimage, vol. 82, pp. 449-469, 2013.
[47] K. Oishi et al., "Atlas-based whole brain white matter analysis using large deformation diffeomorphic metric mapping: application to normal elderly and Alzheimer′s disease participants," Neuroimage, vol. 46, no. 2, pp. 486-499, 2009.
指導教授 蔡 章 仁 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明