博碩士論文 107521022 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.22.27.77
姓名 朱英皓(Ying-Hao Ju)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以漸變式氮化鋁鎵超晶格結構提升成長於矽基板上氮化鎵磊晶層之品質
(Improving the Quality of GaN Epilayer Grown on Si Substrate Using Graded AlGaN Superlattices)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本論文研究主題為針對有機金屬氣相磊晶氮化鎵/氮化鋁鎵高電子遷移率電晶體(GaN/AlGaN HEMT)於矽基板上,設計一系列不同漸變超晶格厚度及結構的緩衝層,以提高GaN之材料品質,並藉由電子顯微鏡與X光繞射術分析其原因。
磊晶成長GaN於矽基板最大的挑戰是必須克服此二材料因晶格常數與熱膨脹係數不匹配,而產生晶體缺陷,例如差排與龜裂,與晶圓翹曲的問題。一般常見的解決方式是在成長主動層之前,先成長一步進漸變式AlGaN緩衝層,如Al0.8Ga0.2N/Al0.5Ga0.5N/Al0.2Ga0.8N,以避免應力過大所造成的形變。本研究首先提出使用Al0.8Ga0.2N/Al0.2Ga0.8N漸變式應力超晶格取代傳統結構中Al0.5Ga0.5N緩衝層,藉由週期性的調變超晶格內Al0.8Ga0.2N的厚度,可在磊晶過程中抑制晶圓翹曲,不僅維持磊晶片的均勻性也能夠提高氮化鎵的品質。當漸變超晶格的厚度逐漸增加,晶圓的殘餘壓縮應力變小,晶圓翹曲的程度亦有逐漸減少的趨勢。以此超晶格結構,在6吋1 mm低阻矽基板上磊晶總厚度5 μm氮化鎵HEMT磊晶層之晶圓翹曲量僅有44 μm。同時,在良好的應力控制下成長高對數的超晶格可過濾更多差排缺陷,降低電子的差排缺陷散射,氮化鎵/氮化鋁鎵高電子遷移率電晶體磊晶片之低溫霍爾量測結果顯示,在10K時電子遷移率可以高達32,000 cm^2/V-s;X光(002) 與(102)面繞射峰之半高寬分別為472與510 arcsec。
上述之Al0.8Ga0.2N/Al0.2Ga0.8N漸變式超晶格亦應用於6吋675 μm低阻矽基板之磊晶,並在Al0.2Ga0.8N步進式緩衝層與GaN緩衝層之間再插入15對Al0.2Ga0.8N/GaN超晶格,在磊晶層總厚度4 μm下,晶圓翹曲量僅2.6 μm。上述結果顯示,本研究所提出之超晶格結構不僅可降低GaN中之差排密度,亦可有效控制磊晶片之翹曲量,達到30 μm以下之量產規格。
摘要(英) The objective of this research is to grow high quality GaN/AlGaN high electron mobility transistors (HEMTs) on silicon substrates by metal-organic chemical vapor deposition (MOCVD). A number of graded AlxGa1-xN/AlyGa1-yN superlattice buffer layers with different thickness and aluminum composition are designed to investigate to how these superlattice buffers improve the material quality using transmission electron microscopy and x-ray diffraction.
The biggest challenge for epitaxial growth of GaN on silicon substrates is to overcome the problems of crystal defects, such as dislocations, cracks and wafer bow, caused by the mismatch of lattice constant and the thermal expansion coefficient between Si and GaN. A common solution is to grow a step-graded AlGaN buffer layer, such as Al0.8Ga0.2N/Al0.5Ga0.5N/Al0.2Ga0.8N, before growing the active layer to avoid wafer deformation caused by excessive stress.
In this study, a graded Al0.8Ga0.2N/Al0.2Ga0.8N superlattice is used to replace the Al0.5Ga0.5N layer in the conventional step-graded AlGaN buffer layer. The quality of GaN and wafer bow can be improved by adjusting the thickness and period number of the superlattice. By increasing the period number of the superlattice, the residual compressive stress becomes smaller and the wafer bow decreases. With this superlattice structure, the wafer bow of a GaN HEMT structure with a total thickness of 5 μm, grown on 6-inch 1 mm-thick low-resistivity silicon substrate, is only 44 μm. Besides, a higher period number of superlattice leads to a lower dislocation density and higher carrier mobility. Low-temperature Hall measurements on the GaN/AlGaN HEMT structure show that electron mobility reaches 32,000 at 10K. The full-width at half maximum of the GaN <002> and <102> x-ray rocking curve is 472 arcsecond and 510 arcsecond, respectively.
The aforementioned Al0.8Ga0.2N/Al0.2Ga0.8N graded superlattice is also applied to the epitaxy on 6-inch 675 μm-thick low-resistivity silicon substrates. By inserting another 15 pairs of Al0.2Ga0.8N/GaN superlattice between the Al0.2Ga0.8N step graded buffer layer and the GaN buffer layer, a wafer bow as low as 2.6 μm has been achieved on a 4 μm-thick HEMT wafer.
This study shows that the superlattices proposed in this research can reduce not only the dislocation density of GaN, but also the bow of the epitaxial wafer to less than 30 μm, which is the specification of production line.
關鍵字(中) ★ 氮化鎵
★ 超晶格
★ 高電子遷移率電晶體
★ 氮化鎵磊晶於矽基板
關鍵字(英) ★ GaN
★ Superlattice
★ HEMT
★ GaN on Si
論文目次 摘要 I
Abstract III
誌謝 IV
目錄 V
圖目錄 VII
表目錄 IX
第一章 導論 1
1.1 前言 1
1.2 氮化鎵材料發展 3
1.2.1氮化鎵材料及其優勢 3
1.2.2氮化鋁鎵/氮化鎵異質結構極化效應 5
1.2.3氮化鋁鎵/氮化鎵高電子遷移率電晶體發展 7
1.2.4 Why GaN on Si 11
1.3 研究動機 12
1.3.1緩衝層設計理念 12
1.3.2 超晶格緩衝層發展 14
1.4 論文架構 19
第二章 緩衝層結構一:漸變超晶格插入層 20
2.1 超晶格插入層結構磊晶 20
2.1.1漸變式超晶格應力控制效果 23
2.1.2漸變式超晶格與殘餘應力之關係 25
2.2漸變超晶格與缺陷過濾 27
第三章 緩衝層結構二:超晶格應變緩解層 32
3.1結構設計 32
3.1.1應力與差排缺陷 33
3.2漸變超晶格應力控制技術總結-緩衝層結構三 36
第四章 漸變式超晶格系列電性表現 39
4.1霍爾量測 39
4.1.1霍爾量測試片製備 39
4.1.2低溫霍爾量測結果 39
4.2垂直崩潰 42
4.2.1垂直崩潰試片製備 42
4.2.1垂直崩潰量測結果 43
第五章 結論 47
參考文獻 49
參考文獻 [1] Alejandro Pozo Ph.D., Shengke Zhang Ph.D., Ricardo Garcia, John Glaser Ph.D., Zhikai Tang Ph.D., and Robert Strittmatter Ph.D, “EPC eGaN® FETs Reliability Testing: Phase 11”, Efficient Power Conversion Corporation, El Segundo, CA,2020.
[2] Y. Zhou, D. Wang, C. Ahyi, C.-C. Tin, J. Williams, and M. Park, “ High breakdown voltage Schottky rectifier fabricated on bulk n-GaN substrate,” Solid-State Electronics, vol. 50, pp. 1744-1747, Nov.-Dec., 2006.
[3] Fabio Bernardini , Vincenzo Fiorentini, David Vanderbilt, “Spontaneous polarization and piezoelectric constants of III-V nitrides,” American Physical Society, vol. 56, no 16, Oct, 1997.
[4] O. Ambacher, B. Foutz, J. Smart, J. R. Shealy, N. G. Weimann, K. Chu, M. Murphy, A. J. Sierakowski, W. J. Schaff, L. F. Eastman, R. Dimitrov, A. Mitchell, and M. Stutzmann, “Two dimensional electron gases induced by spontaneous and piezoelectric polarization in undoped and doped AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 87,no. 1, Jan 2000.
[5] M. Asif Khan, A. Bhattarai, J. N. Kuznia, and D. T. Olson, “High electron mobility transistor based on a GaN-AIxGa1-xN heterojunction,” Appl. Phys. Lett. Vol. 63,iss 9, August 1993.
[6] Eduardo M. Chumbes, A. T. Schremer, Joseph A. Smart, Y. Wang, Noel C. MacDonald, D. Hogue, James J. Komiak, S. J. Lichwalla and R. Leoni, III, “AlGaN/GaN High Electron Mobility Transistors on Si(111) Substrates,” IEEE Transactions on Electron Devices, vol. 18, no.3, March 2001.
[7] I. P. Smorchkova , L. Chen, T. Mates, L. Shen, S. Heikman, B. Moran, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “AlN/GaN and (Al,Ga)N/AlN/GaN two-dimensional electron gas structures grown by plasma-assisted molecular-beam epitaxy,” Journal of Applied Physics, vol. 90, iss. 10, Nov. 2001.
[8] L. Shen, S. Heikman, B. Moran, R. Coffie, N.-Q. Zhang, D. Buttari, I. P. Smorchkova, S. Keller, S. P. DenBaars, and U. K. Mishra, “AlGaN/AlN/GaN High-Power Microwave HEMT,” IEEE Electron Device Letters, vol. 22, no. 10, Oct. 2001.
[9] M. Miyoshi, H. Ishikawa, T. Egawa, K. Asai, M. Mouri, T. Shibata, M. Tanaka, and O. Oda, “High-electron-mobility AlGaN/AlN/GaN heterostructures grown on 100-mm-diam epitaxial AlN/sapphire templates by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol 85, no 10, September 2004.
[10] Yugang Zhou* , Rongming Chu, Jie Liu, Kevin J. Chen, and Kei May Lau, “Gate leakage in AlGaN/GaN HEMTs and its suppression by optimization of MOCVD growth,” phys. stat. sol. (c), vol. 2, no. 7,pp. 2663–2667, April 2005.
[11] Makoto Miyoshi , Takashi Egawa a, Hiroyasu Ishikawa, “Study on mobility enhancement in MOVPE-grown AlGaN/AlN/GaN HEMT structures using a thin AlN interfacial layer,” Solid-State Electronics, vol. 50, pp. 1515–1521, September 2006.
[12] Kai Cheng, Maarten Leys, Stefan Degroote, Joff Derluyn, Brian Sijmus, Paola Favia, Olivier Richard, Hugo Bender, Marianne Germain, and Gustaaf Borghs, “AlGaN/GaN high electron mobility transistors grown on 150 mm Si(111) Substrates with High Uniformity,” Japanese Journal of Applied Physics vol. 47, no. 3 , pp. 1553–1555 , 2008.
[13] Shuxin Tan, Takaaki Suzue, S. Lawrence Selvaraj, and Takashi Egawa, “Influence of growth parameters and thickness of AlN spacer on electrical properties of AlGaN/AlN/GaN High-Electron-Mobility Transistors Grown on 4-Inch Si Substrate,” Japanese Journal of Applied Physics, vol. 48, no. 11R, November 2009.
[14] Xueliang Zhu, Jun Ma, Tongde Huang, Ming Li, Ka Ming Wong, and Kei May Lau, “Improved surface morphology and mobility of AlGaN/GaN HEMT grown on silicon substrate,” Phys. Status Solidi C , vol. 9, no. 3–4, pp.473–475, December 2011.
[15] Xiaoqing Xu, Jiebin Zhong , Hongyun So, Aras Norvilas , Christof Sommerhalter, Debbie G. Senesky, and Mary Tang, “Wafer-level MOCVD growth of AlGaN/GaNon-Si HEMT structures with ultra-high room temperature 2DEG mobility,” AIP Advances, vol. 6, iss. 11, November 2016.
[16] H.-P. Lee, J. Perozek, L. D. Rosario, and C. Bayram, “Investigation of AlGaN/GaN high electron mobility transistor structures on 200-mm silicon (111) substrates employing different buffer layer configurations,” Sci. Rep., vol. 6, pp. 37588 1-9, Nov., 2016.
[17] In-Young Jung, Seungwoo Song , Minhyuk Choi,, Hyunung Yu , Chang Soo Kim, “Evolution of mechanically formed bow due to surface waviness and residual stress difference on sapphire (0001) substrate,” Journal of Materials Processing Technology, vol. 269, pp. 102-108 July 2019.
[18] Qun Li, Jingwen Zhang , Li Meng, Jing Chong, and Xun Hou, “Mobility limitations due to dislocations and interface roughness in AlGaN/AlN/GaN heterostructure,” Journal of Nanomaterials, vol. 2015, Article ID 903098, 6 pages, June 2015.
[19] Stephen W. Kaun , Man Hoi Wong, Sansaptak Dasgupta, Soojeong Choi, Roy Chung, Umesh K. Mishra, and James S. Speck, “Effects of threading dislocation density on the Gate Leakage of AlGaN/GaN heterostructures for high electron mobility transistors,” Applied Physics Express, vol. 4, no. 2, January 2011.
[20] Alois Krost , Armin Dadgar, “GaN-based optoelectronics on silicon substrates,” Materials Science and Engineering, vol 93, iss 1–3, pp. 77-84, April 2002.
[21] H. Ishikawa, G. Y. Zhao , N. Nakada , T. Egawa , T. Soga , T. Jimbo , and M. Umeno, “High-Quality GaN on Si substrate using AlGaN/AlN intermediate layer,” physica status solidi (a), vol.76, iss.1, pp.599-603, November 1999.
[22] Iruthayaraj Beaula Rowena, Susai Lawrence Selvaraj, and Takashi Egawa, “Buffer thickness contribution to suppress vertical leakage current with high breakdown field (2.3 MV/cm) for GaN on Si,” IEEE Electron Device Letters, vol. 32, no. 11, November 2011.
[23] Jialin Zhang , Liang He , Liuan Li , Fan Yang , Zhen Shen , Deqiu Zhou , Zijun Chen , Xiaorong Zhang , Lei He, Zhisheng Wu, Baijun Zhang, and Yang Liu, “The breakdown behavior of GaN epitaxial material on silicon,” Solid State Lighting: International Forum on Wide Bandgap Semiconductors China, pp. 81-84, Beijing, China, Nov. 2016.
[24] Yiqiang Ni, Liang He, Deqiu Zhou, Zhiyuan He, Zijun Chen, Yue Zheng, Fan Yang, Zhen Shen, Xiaorong Zhang, Lei He, Zhisheng Wu, Baijun Zhang, Yang Liu, “Low-leakage current and high-breakdown voltage GaN-on-Si (111) System with an AlGaN impurity blocking layer” Journal of Materials Science: Materials in Electronics, vol. 27, iss. 5, pp. 5158–5163, May 2016.
[25] NTT A.T. Corporation, “AlGaN/GaN HEMT on 6 inch Si Substrate,” Japan, 2018, http://www.ntt-at.com/product/epitaxial/
[26] EpiGaN Co., “GaN Epiwafers for Power Switching,” Belgium, 2020, https://www.soitec.com/media/documents/177/file/epigan_hv650v_product_family_without_marks.pdf
[27] Domenica Visalli, Marleen Van Hove, Puneet Srivastava, Joff Derluyn, Johan Das, Maarten Leys, Stefan Degroote, Kai Cheng, Marianne Germain, and Gustaaf Borghs, “Experimental and simulation study of breakdown voltage enhancement of AlGaN/ GaN heterostructures by Si substrate removal,” Appl. Phys. Lett., vol. 97, iss. 11, September 2010.
[28] Eric Feltin, B. Beaumont, M. Lau¨gt, P. de Mierry, P. Venne´gue`s, H. Lahre`che, M. Leroux, and P. Gibart, “Stress control in GaN grown on silicon (111)by metalorganic vapor phase epitaxy,” Appl. Phys. Lett., vol. 79, no. 20, August 2001.
[29] Seong-Hwan Jang, Cheul-Ro Lee, “High-quality GaN/Si(1 1 1) epitaxial layers grown with various Al0.3Ga0.7N/GaN superlattices as intermediate layer by MOCVD,” Journal of Crystal Growth, vol. 253, iss. 1–4, pp.64-70, June 2003.
[30] Liu Zhe, Wang Xiao-Liang, Wang Jun-Xi, Hu Guo-Xin, Guo Lun-Chun and Li Jin-Min, “The influence of AlN/GaN superlattice intermediate layer on the properties of GaN grown on Si (111) substrates,” Chinese Physics, vol. 16, no. 5, May 2007.
[31] Yiqiang Ni, Zhiyuan He, Deqiu Zhou, Yao Yao, Fan Yang, Guilin Zhou, Zhen Shen, Jian Zhong, Yue Zhen, Baijun Zhang, Yang Liu, “The influences of AlN/GaN superlattices buffer on the characteristics of AlGaN/ GaN-on-Si (111) template,” Superlattices and Microstructures, vol. 83, pp.811-818, July 2015.
[32] Po-Jung Lin, Shih-Yung Huang, Wei-Kai Wang, Che-Lin Chen, Bu-Chin Chung, and Dong-Sing Wuu, “Controlling the stress of growing GaN on 150-mm Si (111) in an AlN/GaN strained layer superlattice,” Applied Surface Science, vol. 362, pp. 434-440, 2017.
[33] L. Pan, X. Dong, J. Ni, Z. Li, Q. Yang, D. Peng, and C. Li, “Growth of compressively-strained GaN films on Si(111) substrates with thick AlGaN transition and AlGaN superlattice buffer layers,” Phys. Status Solidi C, vol. 13, no. 5-6, pp. 181-185, Jan., 2016.
[34] Zijun Chen, Liuan Li, Yue Zheng, Yiqiang Ni, Deqiu Zhou, Liang He, Fan Yang, Lei He, Zhisheng Wu, Baijun Zhang, and Yang Liu, “Influence of the AlN/GaN superlattices buffer thickness on the electrical properties of AlGaN/GaN HFET on Si Substrate,” SSLChina: IFWS, DOI:10.1109, IFWS.2016.7803764, Jan., 2016.
[35] Qiankun Yang, Zhonghui Li, Lei Pan, Weike Luo, Xun Dong, “Role of different kinds of superlattices on the strain engineering of GaN films grown on Si (111),” Superlattices and Microstructures, vol. 109, pp.249-253, September 2017.
[36] Yuya Yamaoka, Ken Kakamu , Akinori Ubukata , Yoshiki Yano , Toshiya Tabuchi, Koh Matsumoto, and Takashi Egawa, “Influence of the Al content of the AlGaN buffer layer in AlGaN/GaN high-electron-mobility transistor structures on a Si substrate,” Phys. Status Solidi A, vol 214, iss. 3, March 2017.
[37] Yuya Yamaoka, Akinori Ubukata , Yoshiki Yano , Toshiya Tabuchi , Koh Matsumoto and Takashi Egawa, “Effect of threading dislocation in an AlN nucleation layer and vertical leakage current in an AlGaN/GaN high-electron mobility transistor structure on a silicon substrate,” Semiconductor Science and Technology, vol. 34, no. 3, February 2019.
[38] Rüdiger Quay, Gallium Nitride Electronics, Springer Series in Materials Science, Leipzig, Germany, April 5, 2008.
[39] Maria Rosa Ardigo, Maher Ahmed, Aurélien Besnard, “Stoney formula: Investigation of curvature measurements by optical profilometer,” Advanced Materials Research , vol. 996, pp. 361-366, August 2014.
[40] Makoto Miyoshi, Arata Watanabe and Takashi Egawa, “Modeling of the wafer bow in GaN-on-Si epiwafers employing GaN/AlN multilayer buffer structures,” Semicond. Sci. Technol, vol. 31, no. 10, September 2016.
[41] Christian Kuhn, Tino Simoneit, Martin Martens, Toni Markurt, Johannes Enslin, Frank Mehnke, Konrad Bellmann, Tobias Schulz, Martin Albrecht, Tim Wernicke, Michael Kneissl, “MOVPE Growth of Smooth and Homogeneous Al0.8Ga0.2N:Si Superlattices as UVC Laser Cladding Layers,” Phys. Status Solidi A, vol. 215, iss. 13, July 2018.
[42] Masanobu Hiroki and Naoki Kobayashi, “Flat surfaces and interfaces in AlN/GaN heterostructures and superlattices grown by flow-rate modulation epitaxy,” Jpn. J. Appl. Phys. vol. 42, Part 1, No. 4B, pp. 2305–2308, April 2003.
[43] J. Baia, T. Wang, P.J. Parbrook, K.B. Lee, A.G. Cullis, “A study of dislocations in AlN and GaN films grown on sapphire substrates,” Journal of Crystal Growth, vol. 282, iss. 3–4, pp. 290-296 1 September 2005.
[44] Masahiro Ishida, Tetsuzo Ueda, Tsuyoshi Tanaka, Daisuke Ueda, “GaN on Si Technologies for Power Switching Devices,” IEEE Transactions on Electron Devices, vol. 60, no. 10, October 2013.
[45] Wei Meng , Wang Xiao-Liang, Xiao Hong-Ling, Wang Cui-Mei , Pan Xu , Hou Qi-Feng and Wang Zhan-Guo, “Growth of 2 μm Crack-Free GaN on Si(111) Substrates by Metal Organic Chemical Vapor Deposition,” Chinese Physics Letters, vol 28, no. 4, 2011.
[46] J. W. P. Hsu, M. J. Manfra, R. J. Molnar, B. Heying, and J. S. Speck, “Direct imaging of reverse-bias leakage through pure screw dislocations in GaN films grown by molecular beam epitaxy on GaN templates,” Appl. Phys. Lett., vol. 81, no. 1, June 2002.
[47] J. Elsner, R. Jones, M. I. Heggie, P. K. Sitch, M. Haugk,, Th. Frauenheim, S. O¨ berg, P. R. Briddon, “Deep acceptors trapped at threading-edge dislocations in GaN,” American Physical Society, Phys. Rev. B, vol. 58, no. 19, November 1998.
[48] Shu Yang, Chunhua Zhou, Shaowen Han, Jin Wei , Kuang Sheng, Senior, and Kevin J. Chen, “Impact of Substrate Bias Polarity on Buffer-Related Current Collapse in AlGaN/GaN-on-Si Power Devices,” IEEE Transactions on Electron Devices vol. 64, no. 12, December 2017.
指導教授 綦振瀛 審核日期 2020-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明