博碩士論文 107521073 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.135.205.146
姓名 蕭果登(GUO-DENG XIAO)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以OPAL-RT硬體迴圈實現微電網之智慧型控制
(Intelligent Control of Microgrid with OPAL-RT Hardware in the Loop)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 本論文利用OPAL-RT即時模擬系統與硬體迴圈(Hardware In the Loop, HIL)功能建置一以七美島電力系統為原型之微電網。本論文的微電網系統控制方法採用主、從控制法則,本論文由一儲能系統、太陽光發電系統、風力發電系統與三條負載饋線所組成。其中以儲能系統當作微電網控制主機(Master),而太陽光發電系統及風力發電系統則定位為從屬(Slave)部分。此外,為了改善在併網時的實虛功率控制、併網轉孤島模式時的模式切換以及孤島狀態下時因日照或負載變化所造成之暫態響應,本論文除了以模糊類神經網路(Fuzzy Neural Network, FNN)取代傳統比例積分控制器外,也提出一線上訓練的非對稱歸屬函數之小波派翠模糊類神經網路(Wavelet Petri Fuzzy Neural Network – Asymmetric Membership Function, WPFNN-AMF)將其取代並將三者的效益做對比。本文將詳細介紹WPFNN-AMF的網路架構與線上學習法則。最後,以HIL實驗結果驗證使用FNN、WPFNN-AMF等智慧型控制器在不同操作模式下之有效性與可行性。
摘要(英) This paper uses the OPAL-RT real-time simulation system and hardware in the loop (HIL) function to build a microgrid based on the Cimei island power system. The microgrid using master-slave control is composed of a storage system, a photovoltaic (PV) system, a wind turbine system and three load feeders. Among them, the energy storage system is regarded as a master unit, and the photovoltaic (PV) system and the wind turbine generator system are positioned as slave units. Moreover, in order to improve the control of active and the reactive power in grid-connected mode, the transient response of the switching during the grid-connected mode to islanding mode, and the transient response which caused by irradiance or load changes in the island mode, two online trained intelligent controllers are proposed to replace the conventional proportional-integral (PI) controller in the storage system, one is fuzzy neural network (FNN), and the other is wavelet petri fuzzy neural network with an asymmetric membership function (WPFNN-AMF). This paper will introduce the WPFNN-AMF network architecture and online learning rules in detail. Finally, the HIL experiment results are used to verify the effectiveness and feasibility of using FNN, WPFNN-AMF intelligent controllers in different operating modes.
關鍵字(中) ★ 微電網
★ 主從控制
★ OPAL-RT即時模擬
★ 硬體迴圈
★ 小波派翠模糊類神經網路
★ 非對稱歸屬函數
關鍵字(英) ★ Microgrid
★ master-slave control
★ OPAL-RT real-time simulation
★ hardware in the loop
★ wavelet petri fuzzy neural network
★ asymmetric membership function
論文目次 摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VII
表目錄 XII
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 文獻回顧 3
1.3 論文大綱 6
1.4 本文貢獻 7
第二章 微電網與分散式電源介紹 8
2.1 簡介 8
2.2 微電網控制策略 8
2.2.1 定功率控制(PQ control) 8
2.2.2 電壓頻率控制(V/F control) 8
2.2.3 主從控制 9
2.2.4 分級控制 10
2.3 微電網規範 12
2.3.1 IEEE 1547-2003規範 12
2.4 分散式電源介紹 13
2.4.1 太陽能電池特性 13
2.4.2 風力發電系統 17
2.4.3 儲能系統 18
第三章 系統架構與控制策略 21
3.1 簡介 21
3.2 三相座標軸轉換 21
3.3 鎖相迴路 23
3.4 變流器之實、虛功控制與電流控制 24
3.5 電力系統架構與控制 25
3.5.1 七美島電力系統介紹 25
3.5.2 系統架構與控制策略 27
3.5.3 主控制策略 29
3.5.4 從控制策略 31
第四章 非對稱歸屬函數之小波派翠模糊類神經網路 35
4.1 簡介 35
4.2 非對稱歸屬函數之小波派翠模糊類神經網路架構 35
4.3 非對稱歸屬函數之小波派翠模糊類神經網路之線上學習法則 40
4.4 非對稱歸屬函數之小波派翠模糊類神經網路收斂性分析 43
第五章 模擬結果 46
5.1 模擬情境 46
5.2 情境一之模擬結果 47
5.3 情境二之模擬結果 57
5.4 情境三之模擬結果 67
5.5 情境四之模擬結果 75
第六章 硬體迴圈與實驗結果 83
6.1 簡介 83
6.2 即時模擬系統 84
6.2.1 即時模擬介紹 84
6.2.2 OP4510硬體 87
6.2.3 軟體介面 RT-LAB 89
6.2.4 模型分割 92
6.2.4.1 OpComm 92
6.2.4.2 模型分割及命名 92
6.2.4.3 Artemis Stubline 94
6.2.5 硬體迴圈規劃 95
6.3 數位訊號處理器 97
6.5 實驗結果 99
6.5.1 情境一實驗結果 100
6.5.2 情境二實驗結果 110
6.5.3 情境三實驗結果 119
6.5.4 情境四實驗結果 128
第七章 結論與未來展望 137
7.1 結論 137
7.2 未來展望 138
參考文獻 139
作者簡歷 147
參考文獻 [1] D. J. Cox and T. Davis, “Distributed generation and sensing for intelligent distributed microgrids,” in Proc. IEEE/SMC International Conf. System of Systems Engineering, Los Angeles, CA, pp. 5, 2006.
[2] 談光雄,「微電網之運轉與智慧型控制」,國防大學理工學院國防科學研究所,博士論文,民國102年。
[3] IEEE Standard 929-2000, “IEEE Recommended practice for utility interface of photovoltaic(PV) systems,” IEEE Standard, New York, USA, pp. 1-26, 2000.
[4] IEEE Standard 1547-2003, “IEEE Standard for interconnecting distributed resources with electric power systems,” IEEE Standard, New York, USA, pp. 1-16, 2003
[5] R. H. Lasseter, “MicroGrids,” in Proc. IEEE Conf. Power Engineering Society Winter Meeting, New York, NY, USA, 2002, pp. 305-308 vol.1.
[6] P. Piagi and R. H. Lasseter, “Autonomous control of microgrids,” in Proc. IEEE Power Engineering Society General Meeting, Montreal, Que., pp. 8, 2006.
[7] J. Y. Kim, J. H. Jeon, S. K. Kim, C. Cho, J. H. Park, H. M. Kim, and K. Y. Nam, “Cooperative control strategy of energy storage system and microsources for stabilizing the microgrid during islanded operation,” IEEE Trans. Power Electronics, vol. 25, no. 12, pp. 3037-3048, Dec. 2010.
[8] Q. Shafiee, J. M. Guerrero, and J. C. Vasquez, “Distributed secondary control for islanded microgrids—a novel approach,” IEEE Trans. Power Electronics, vol. 29, no. 2, pp. 1018-1031, Feb. 2014.
[9] I. J. Balaguer, Q. Lei, S. Yang, U. Supatti and F. Z. Peng, “Control for grid-connected and intentional islanding operations of distributed power generation,” IEEE Trans. Industrial Electronics, vol. 58, no. 1, pp. 147-157, Jan. 2011.
[10] B. Zhao, X. Zhang and J. Chen, “Integrated microgrid laboratory system,” IEEE Trans. Power Systems, vol. 27, no. 4, pp. 2175-2185, Nov. 2012.
[11] M. Chamana and S. B. Bayne, “Modeling and control of directly connected and inverter interfaced sources in a microgrid,” North American Power Symposium, Boston, MA, pp. 1-7, 2011.
[12] Y. Han, K. Zhang, H. Li, E. A. A. Coelho and J. M. Guerrero, “MAS-based distributed coordinated control and optimization in microgrid and microgrid clusters: a comprehensive overview,” IEEE Trans. Power Electronics, vol. 33, no. 8, pp. 6488-6508, Aug. 2018.
[13] D. E. Olivares, A. M. Sani, A. H. Etemadi, C. A. Cañizares, R. Iravani, M. Kazerani, A. H. Hajimiragha, O. G. Bellmunt, M. Saeedifard, R. P. Behnke, G. A. J. Estévez, and N. D. Hatziargyriou, “Trends in microgrid control,” IEEE Trans. Smart Grid, vol. 5, no. 4, pp. 1905-1919, July 2014.
[14] J. M. Guerrero, J. C. Vasquez, J. Matas, L. G. de Vicuna and M. Castilla, “Hierarchical control of droop-controlled AC and DC microgrids—a general approach toward standardization,” IEEE Trans. Ind. Electron., vol. 58, no. 1, pp. 158-172, Jan. 2011.
[15] K. Yu, Q. Ai, S. Wang, J. Ni, and T. Lv, “Analysis and optimization of droop controller for microgrid system based on small-signal dynamic model,” IEEE Trans. Smart Grid, vol. 7, no. 2, pp. 695-705, March 2016.
[16] L. Meng, Q. Shafiee, G. F. Trecate, H. Karimi, D. Fulwani, X. Lu, and J. M. Guerrero, “Review on control of DC microgrids and multiple microgrid clusters,” IEEE J. Emerg. Sel. Top. Power Electron., vol. 5, no. 3, pp. 928–948, Sep. 2017.
[17] L. Y. Lu, J. H. Liu, and C. C. Chu, “Distributed real-time simulation modeling and analysis of a micro-grid with renewable energy sources,” IEEE PES Innovative Smart Grid Technologies, Tianjin, pp. 1-6, 2012.
[18] C. Dufour and J. Bélanger, “On the use of real-time simulation technology in smart grid research and development,” in Proc. IEEE Energy Conversion Congress and Exposition, Denver, CO, 2013, pp. 2982-2989.
[19] A. Subburaj, A. R. Arra, and S. Bayne, “Stability analysis of A.C. and D.C. microgrids using OPAL-real time digital simulator,” in Proc. Ninth Annual IEEE Green Technologies Conf. (GreenTech), Denver, CO, pp. 39-45, 2017.
[20] O. Krishan and S. Suhag, “Power management control strategy for hybrid energy storage system in a grid-independent hybrid renewable energy system: a hardware-in-loop real-time verification,” IET Renewable Power Generation, vol. 14, no. 3, pp. 454-465, 24 2 2020.
[21] S. Sharma, V. Verma and R. K. Behera, “Real-time implementation of shunt active power filter with reduced sensors,” IEEE Trans. Industry Applications, vol. 56, no. 2, pp. 1850-1861, March-April 2020.
[22] C. A. Caldeira, A. D. D. de Almeida, H. R. Schlickmann, C. S. Gehrke, and F. Salvadori, “Impact analysis of the BESS insertion in electric grid using real-time simulation,” in Proc. IEEE PES Innovative Smart Grid Technologies Conf. - Latin America (ISGT Latin America), Gramado, Brazil, pp. 1-6, 2019.
[23] C. Dufour, S. Cense, and J. Belanger, “An FPGA HIL reconfigurable testing platform for vehicular traction systems,” in Proc. IEEE Vehicle Power and Propulsion Conf. (VPPC), Coimbra, pp. 1-4, 2014.
[24] S. Abourida, J. Belanger, and C. Dufour, “Real-time HIL simulation of a complete PMSM drive at 10 /spl mu/s time step,” in Proc. European Conf. Power Electronics and Applications, Dresden, pp. 9 pp.-P.9, 2005.
[25] D. Bian, M. Kuzlu, M. Pipattanasomporn, S. Rahman, and Y. Wu, “Real-time co-simulation platform using OPAL-RT and OPNET for analyzing smart grid performance,” in Proc. IEEE Power & Energy Society General Meeting, Denver, CO, pp. 1-5, 2015.
[26] C. Dufour, S. Cense, T. Ould-Bachir, L. Grégoire, and J. Bélanger, “General-purpose reconfigurable low-latency electric circuit and motor drive solver on FPGA,” in Proc. IECON 2012 - 38th Annual Conf. IEEE Industrial Electronics Society, Montreal, QC, pp. 3073-3081, 2012.
[27] J. Bélanger, A. Yamane, A. Yen, S. Cense, and P. Robert, “Validation of eHS FPGA reconfigurable low-latency electric and power electronic circuit solver,” in Proc. IECON 2013 - 39th Annual Conf. of the IEEE Industrial Electronics Society, Vienna, pp. 5418-5423, 2013.
[28] M. A. Hassan, E. Li, X. Li, T. Li, C. Duan, and S. Chi, “Adaptive passivity-based control of dc–dc buck power converter with constant power load in DC microgrid systems,” IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 7, no. 3, pp. 2029-2040, Sept. 2019.
[29] B. S. Achary, S. Mishra, and A. Kumar, “Real time hardware in loop testing of single phase grid connected PV system,” Eighteenth National Power Systems Conf. (NPSC), Guwahati, pp. 1-6, 2014.
[30] L. Ibarra, A. Rosales, P. Ponce, A. Molina, and R. Ayyanar, “Overview of real-time simulation as a supporting effort to smart-grid attainment,” Energies, vol. 10, no. 817, Jun., 2017.
[31] S. Y. Chen, Y. H. Hung, and S. S. Gong, “Speed control of vane-type air motor servo system using proportional integral derivative based fuzzy neural network,” Int. J. Fuzzy Syst., vol. 18, no. 6, pp. 553–564, Jan. 2016.
[32] F. J. Lin, R. J. Wai, and H. P. Chen, “A PM synchronous servo motor drive with an on-line trained fuzzy neural network controller,” IEEE Trans. Energy Conversion, vol. 13, no. 4, pp. 319-325, Dec. 1998.
[33] F. J. Lin, K. C. Lu, T. H. Ke, B. H. Yang, and Y. R. Chang, “Reactive power control of three-phase grid-connected PV system during grid faults using takagi–sugeno–kang probabilistic fuzzy neural network nontrol,” IEEE Trans. Ind. Electron., vol. 62, no. 9, pp. 5516–5528, Sep. 2015.
[34] F. J. Lin and K. H. Tan, “Squirrel-cage induction generator system using probabilistic fuzzy neural network for wind power applications,” in Proc. IEEE International Conf. Fuzzy Systems (FUZZ-IEEE), Istanbul, pp. 1-8, 2015.
[35] K. H. Tan, “Squirrel-cage induction generator system using wavelet petri fuzzy neural network control for wind power applications,” IEEE Trans. Power Electronics, vol. 31, no. 7, pp. 5242-5254, July 2016.
[36] F. J. Lin, S. G. Chen, S. Li, H. T. Chou, and J. R. Lin, “Online auto-tuning technique for IPMSM servo drive by intelligent identification of moment of inertia,” IEEE Trans. Industrial Informatics, Jan. 2020.
[37] P. Wang, L. Ma, R. M. P. Goverde, and Q. Wang, “Rescheduling trains using petri nets and heuristic search,” IEEE Trans. Intelligent Transportation Systems, vol. 17, no. 3, pp. 726-735, March 2016.
[38] F. J. Lin, K. H. Tan, and D. Y. Fang, “Squirrel-cage induction generator system using intelligent control for wind power applications,” in Proc. IEEE International Conf. Fuzzy Systems (FUZZ-IEEE), Hyderabad, 2013.
[39] F. J. Lin, K. H. Tan, W. C. Luo, and G. D. Xiao, “Improved LVRT performance of PV power plant using recurrent wavelet fuzzy neural network control for weak grid conditions,” IEEE Access, vol. 8, pp. 69346-69358, 2020.
[40] Y. C. Hung, F. J. Lin, J. C. Hwang, J. K. Chang, and K. C. Ruan, “Wavelet fuzzy neural network with asymmetric membership function controller for electric power steering system via improved differential evolution,” IEEE Trans. Power Electron., vol. 30, no. 4, pp. 2350-2362, Apr. 2015.
[41] R. A. Badwawi, W. R. Issa, T. K. Mallick, and M. Abusara, “Supervisory control for power management of an islanded AC microgrid using a frequency signalling-based fuzzy logic controller,” IEEE Trans. Sustainable Energy, vol. 10, no. 1, pp. 94-104, Jan. 2019.
[42] 石承民,「結合虛擬慣量併網型微電網之智慧型控制」,國立中央大學,碩士論文,2019年六月。
[43] 楊柏輝,「應用單級轉換器之太陽能光電系統實虛功控制策略」,國立中央大學,碩士論文,2016年六月。
[44] K. Ishaque, Z. Salam, M. Amjad, and S. Mekhilef, “An improved particle swarm optimization (PSO)-based MPPT for PV with reduced steady-state oscillation,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3627-3638, Aug. 2012.
[45] J. Vergauwe, A. Martinez, A. Ribas, “Optimization of a wind turbine using permanent magnet synchronous generator (PMSG)” Renewable Energy & Power Quality Journal, Vol. 1, No.4, April 2006.
[46] MATLAB/Simulink wind turbine.
[47] 謝錦隆,薛康琳,鍾岳霖,戴志揚,「臺灣風力發電與液流電池系統儲電情境模擬」,臺灣能源期刊第三卷第一期第55-78頁,中華民國105年3月。
[48] X. Huang and B. Jiang, “Research on lithium battery energy storage system in wind power,” in Proc. International Conf. Electrical and Control Engineering, Yichang, pp. 1200-1203, 2011.
[49] 黃仲欽,「交流電動機控制」,交流電動機課程講義,民國97年。
[50] 柯廷翰,「考慮配電系統三相故障之具低電壓穿越能力之智慧型太陽光電系統」,國立中央大學,碩士論文,2013年六月。
[51] 澎湖縣政府澎湖縣七美鄉公所,七美島地理位置。
[52] NEP-Ⅱ第二期能源國家型科技計畫,智慧電網主軸中心107年度期末審查報告。
[53] 龔建豪,「高滲透率太陽光電系統對七美島電力系統穩定度與電力品質之衝擊分析」,國立中山大學,碩士論文,2015年六月。
[54] 許振廷,陳朝順,張政文,陳柏文,古育承,洪煜軒,「七美島太陽光發電量驟變對系統頻率之影響分析」,中華民國第15屆離島資訊與應用研討會,2016年五月。
[55] 劉冠志,「七美地區太陽光電風力發電系統衝擊與成本效益分析」,國立澎湖科技大學,碩士論文,2014年六月。
[56] N. S. Jayalakshmi, D. N. Gaonkar, and K. S. K. Kumar, “Dynamic modeling and performance analysis of grid connected PMSG based variable speed wind turbines with simple power conditioning system,” in Proc. IEEE International Conf. Power Electronics, Drives and Energy Systems (PEDES), Bengaluru, pp. 1-5, 2012.
[57] H. K. Sharma, A. Samaria, and L. Gidwani, “Designing and performance analysis of controller for PMSG based wind energy conversion system,” in Proc. International Conf. Information, Communication, Instrumentation and Control (ICICIC), Indore, pp. 1-6, 2017.
[58] A. Rolan, A. Luna, G. Vazquez, D. Aguilar, and G. Azevedo, “Modeling of a variable speed wind turbine with a permanent magnet synchronous generator,” IEEE International Symposium on Industrial Electronics, Seoul, pp. 734-739, 2009.
[59] S. Sumathi, L. Kumar, and P. Surekha, “Green Energy and Technology Solar PV and Wind Energy Conversion Systems An Introduction to Theory, Modeling with MATLAB/SIMULINK, and the Role of Soft Computing Techniques,” 2015.
[Online].Available: https://www.academia.edu/33156865/Green_Energy_and_Technology_Solar_PV_and_Wind_Energy_Conversion_Systems_An_Introduction_to_Theory_Modeling_with_MATLAB_SIMULINK_and_the_Role_of_Soft_Computing_Techniques
[60] 奇比颱風澎湖縣災害應變中心處理報告。
[61] 劉邦威,「應用即時模擬技術於交流微電網之建模與模擬」,國立中正大學,碩士論文,2012年七月。
[62] Opal-RT Technologies Inc., RT LAB Version 11.3, User’s Guide.
[63] OP4510使用教學,思渤科技,2019。
[64] Opal-RT Technologies Inc., ARTEMIS Version 7.3, User’s Guide.
[65] Opal-RT Technologies Inc., eHS User’s Guide.
[66] TMS320F28335, TMS320F28334, TMS320F28332, TMS320F28235,
TMS320F28234, TMS320F28232 Digital Signal Controllers (DSCs) Data Manual, Texas Instruments, Jun. 2007.
指導教授 林法正(FAA-JENG LIN) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明