博碩士論文 107521092 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:115 、訪客IP:3.137.187.229
姓名 張恩維(En-Wei Chang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 以超級電容為儲能元件之內藏式永磁同步馬達控制
(A Supercapacitor Based IPMSM drive using intelligent control)
相關論文
★ 機場地面燈光更新工程 -以桃園國際機場南邊跑滑道為例★ 多功能太陽能微型逆變器之研製
★ 應用於儲能系統之智慧型太陽光電功率平滑化控制★ 利用智慧型控制之三相主動式電力濾波器的研製
★ 應用於內藏式永磁同步馬達之智慧型速度控制及最佳伺服控制頻寬研製★ 新型每安培最大轉矩控制同步磁阻馬達驅動系統之開發
★ 同步磁阻馬達驅動系統之智慧型每安培最大轉矩追蹤控制★ 利用適應性互補式滑動模態控制於同步磁阻馬達之寬速度控制
★ 具智慧型太陽光電功率平滑化控制之微電網電能管理系統★ 高性能同步磁阻馬達驅動系統之 寬速度範圍控制器發展
★ 智慧型互補式滑動模態控制系統實現於X-Y-θ三軸線性超音波馬達運動平台★ 智慧型同動控制之龍門式定位平台及應用
★ 利用智慧型滑動模式控制之五軸主動式磁浮軸承控制系統★ 智慧型控制雙饋式感應風力發電系統之研製
★ 無感測器直流變頻壓縮機驅動系統之研製★ 應用於模組化輕型電動車之類神經網路控制六相永磁同步馬達驅動系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 在本研究中,開發了一種基於超級電容的內藏式永磁同步馬達驅動,以模擬城市輕軌車輛的運行,包括特定速度曲線的速度追隨和超級電容的充電。在基於超級電容的內藏式永磁同步馬達驅動中,設計了用於模擬輕軌車輛速度控制的驅動模式和用於超級電容充電的充電模式。在驅動模式下,開發了磁場導向控制內藏式永磁同步馬達驅動系統來模擬輕軌車輛的速度控制。在充電模式下,為超級電容的充電開發了恆流恆壓充電策略。此外,以上兩種模式使用相同的變頻器和坐標軸轉換以降低設計複雜度。而為了測試超級電容的性能,使用特定的測試行駛週期來獲得仿真輕軌車輛的速度命令。設計目標是對超級電容進行快速充電,使其能夠為模擬的輕軌車輛提供足夠的能量,以運行完整的測試行駛週期。另外,為提高仿真輕軌車輛暫態速度響應的控制性能,提出了一種切比雪夫模糊類神經網絡速度控制器,並詳細推導了所提出的切比雪夫模糊類神經網路的網絡架構,線上學習法則和收斂性分析。最後,展示一些實驗結果,以證明所開發之針對超級電容的恆流恆壓充電策略以及所提出的切比雪夫模糊類神經網路速度控制器對於仿真輕軌車輛的有效性。
摘要(英) A supercapacitor (SC) based interior permanent magnet synchronous motor (IPMSM) drive is developed in this study to emulate the operation of an urban light rail vehicle (LRV) including the speed tracking of a specific velocity profile and the charging of the SC. In the SC based IPMSM drive, the motoring mode to emulate the LRV speed tracking control and the charging mode for the charging of the SC are both designed. In the motoring mode, a field-oriented controlled (FOC) IPMSM drive system is developed to emulate the speed control of a LRV. In the charging mode, the constant current and constant voltage (CC-CV) charging strategy is developed for the charging of the SC. Moreover, the above two modes use the same inverter and coordinate transformations to reduce the design complexity. Furthermore, in order to test the performance of SC, the speed command of the emulated LRV is obtained using a specific testing driving cycle. The design objective is a quick charge of SC being able to provide enough energy for the emulated LRV to operate a full testing driving cycle. In addition, to improve the control performance of the transient speed of the emulated LRV, a Chebyshev fuzzy neural network (CheFNN) speed controller is proposed. The network structure, online learning algorithm and the convergence analysis of the proposed CheFNN are derived in detail. Finally, some experimental results are given to demonstrate the effectiveness of the developed CC-CV charging strategy for the SC and the proposed CheFNN speed controller for the emulated LRV.
關鍵字(中) ★ 內藏式永磁同步馬達
★ 超級電容
★ 切比雪夫模糊類神經網路
★ 城市輕軌車
關鍵字(英) ★ Interior permanent magnet synchronous motor
★ Light rail vehicle
★ Supercapacitor
論文目次 摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 X
第一章 緒 論 1
1.1 研究背景與動機 1
1.2 文獻回顧 2
1.3 論文大綱 5
1.4 本文貢獻 6
第二章 基於超級電容之內藏式永磁同步馬達驅動平台硬體介紹 8
2.1 馬達變頻驅動系統 8
2.2 改良式磁粉式剎車 9
2.3 數位訊號處理器 10
2.4 周邊電路板 15
2.4.1 交流電流回授電路 16
2.4.2 交流電壓回授電路 16
2.4.3 直流電壓回授電路 17
2.4.4 過流保護電路 17
2.4.5 開關互鎖電路 18
第三章 內藏式永磁同步馬達數學模型及電磁轉矩程式 19
3.1 三相座標轉換 21
3.2 內藏式永磁同步馬達在abc座標系下之數學模型 24
3.3 內藏式永磁同步馬達在αβ座標系下之數學模型 26
3.4 內藏式永磁同步馬達在d-q座標系下之數學模型 30
3.5 凸極式反電動勢定義 33
第四章 超級電容之原理與種類,特性以及應用 36
4.1 超級電容工作原理 36
4.2 超級電容的種類 37
4.2.1 電雙層電容 38
4.2.2 偽電容 39
4.2.3 混合電容 40
4.3 超級電容的特性 41
4.4 超級電容的應用 43
4.4.1 超級電容在交通運輸的應用 43
4.4.2 備用電源和可攜式消費性電子的應用 44
第五章 切比雪夫模糊類神經網路 46
5.1 切比雪夫模糊類神經網路架構 46
5.2 線上學習法則 49
5.3 網路收斂性分析 51
第六章 基於超級電容的仿真輕軌車輛平台實驗架構 54
6.1 系統簡介 54
6.2 超級電容充電器 55
6.2.1 鎖相迴路 56
6.3 行駛週期定義 57
第七章 模擬與實驗結果 59
7.1 仿真輕軌車輛速度控制 61
7.1.1 實驗架構與設計 62
7.1.2 模擬結果 63
7.2 實驗結果 77
第八章 結論與未來研究方向 87
參考文獻 88
作者簡歷 92
參考文獻 [1] P. Pillay, and R. Krishnan, “Application Characteristics of Permanent Magnet Synchronous and Brushless dc Motors for Servo Drives,” IEEE Trans. Ind. Appl., vol. 27, no. 5, pp. 986-996, Sep./Oct. 1991.
[2] D. B. W. Abeywardana, B. Hredzak, and V. G. Agelidis, “Single-phase grid-connected LiFePO4 battery–supercapacitor hybrid energy storage system with interleaved boost inverter,” IEEE Trans. Power Electron.,vol. 30, no. 10, pp. 5591-5604, Oct. 2015
[3] A. A. Mamun, Z. Liu, D. M. Rizzo, and S. Onori, ‘‘An integrated design and control optimization framework for hybrid military vehicle using lithium-ion battery and supercapacitor as energy storage devices,’’ IEEE Trans. Transp. Electrific., vol. 5, no. 1, pp. 239–251, Mar. 2019.
[4] A. Burke, and H. Zhao, "Present and future applications of supercapacitors in electric and hybrid vehicles," 2015 IEEE 82nd Vehicular Technology Conference (VTC2015-Fall), Boston, MA, 2015, pp. 1-5.
[5] J. Zhao, Y. Gao, and A. F. Burke, “Performance testing of supercapacitors: important issues and uncertainties,” Journal of Power Sources, vol. 363, pp. 327-340, Sep, 2017.
[6] D. Xu, L. Zhang, B. Wang, and G. Ma, “Modeling of supercapacitor behavior with an improved two-branch equivalent circuit,” IEEE Access, vol. 7, pp. 26379-26390, 2019.
[7] L. Mir, I. Etxeberria-Otadui, I. P. de Arenaza, I. Sarasola, and T. Nieva, “A supercapacitor based light rail vehicle: system design and operations modes,” 2009 IEEE Energy Conversion Congress and Exposition, San Jose, CA, 2009, pp. 1632-1639.
[8] R. Barrero, X. Tackoen, and J. Van Mierlo, “Analysis and configuration of supercapacitor based energy storage system on-board light rail vehicles,” 2008 13th International Power Electronics and Motion Control Conference, Poznan, 2008, pp. 1512-1517.
[9] N. Ghavihaa, J. Campilloa, M. Bohlinb, and E. Dahlquista, “Review of application of energy storage devices in railway transportation,” Energy Procedia, vol. 105, pp. 4561 – 4568, 2017.
[10] Z. Yang, Z. Yang, H. Xia, F. Lin, F. Zhu, “Supercapacitor state based control and optimization for multiple energy storage devices considering current balance in urban rail transit,” Energies, vol. 10, no. 520, Apr. 2017.
[11] P. V. Radu, A. Szelag, and M. Steczek, “On-board energy storage devices with Supercapacitors for metro trains— case study analysis of application effectiveness,” Energies, vol. 12, no. 1291, Apr, 2019
[12] Z. Zou, J. Cao, B. Cao, and W. Chen, “Evaluation strategy of regenerative braking energy for supercapacitor vehicle,” ISA Transactions, vol. 55, pp. 234-240, Mar, 2015.
[13] A. Adib and R. Dhaouadi, “Modeling and analysis of a regenerative braking system with a battery-supercapacitor energy storage,” 2017 7th International Conference on Modeling, Simulation, and Applied Optimization (ICMSAO), Sharjah, 2017, pp. 1-6.
[14] M. Khodaparastan, A. A. Mohamed, and W. Brandauer,“Recuperation of regenerative braking energy in electric rail transit systems,”IEEE Trans. Intel. Transport. Sys., vol. 20, no. 8, Aug. 2019, pp. 2831-2847.
[15] D. M. Sahoo and S. Chakraverty, “Functional link neural network learning for response prediction of tall shear buildings with respect to earthquake data,” IEEE Trans. Syst., Man, Cybern., Syst., vol. 48, no. 1, pp. 1–10, Jan. 2018.
[16] B. Y. Vyas, B. Das, and R. P. Maheshwari, “Improved fault classification in series compensated transmission line: Comparative evaluation of chebyshev neural network training algorithms,” IEEE Trans. Neural Netw. Learn. Syst., vol. 27, no. 8, pp. 1631–1642, Aug. 2016.
[17] L. Jin, Z. Huang, Y. Li, Z. Sun, H. Li, and J. Zhang, ‘‘On modified multioutput Chebyshev-polynomial feed-forward neural network for pattern classification of wine regions,’’ IEEE Access, vol. 7, pp. 1973–1980, 2019.
[18] S. Hou, J. Fei, C. Chen, and Y. Chu, “Finite-time adaptive fuzzy-neural network control of active power filter,” IEEE Trans. Power Electron., vol. 34, no. 10, pp. 10298–10313, Oct. 2019.
[19] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[20] 俞韋安,「應用於內藏式永磁同步馬達之智慧型最佳伺服頻寬調整及慣量估測」,中央大學電機工程系,碩士論文,民國107年7月。
[21] Texas Instruments,TMS320F28335 datasheet.
[22] MCP4922 datasheet.
[23] 石承民,「結合虛擬慣量併網型微電網之智慧型控制」,中央大學電機工程系,碩士論文,民國108年7月。
[24] 陳家銘,「以單一直流鏈電流感測器結合低轉速轉矩補償之無轉軸位置感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國102年6月。
[25] D. Hanselman, Brushless permanent magnet motor design, The Writer’s Collective, USA , 2003.
[26] 瑞智精密股份有限公司, http://www.rechi.com.
[27] 劉昌煥,「交流電機控制」,東華書局,民國92年。
[28] 高子胤,「以反電動勢為基礎之比例積分微分類神經網路估測器之無感測器變頻壓縮機驅動系統開發」,中央大學電機工程系,碩士論文,民國100年7月。
[29] S. Adrian and R. Gallay, “Properties and applications of supercapacitors from the state-of-the-art to future trends,” PCIM Conference, Nuremberg, 2000.
[30] C. Y. Hui, C. W. Kan, C. L. Mak and K. H . Chau, “Flexible Energy Storage System—An Introductory Review of Textile-Based Flexible Supercapacitors,” Journal of Process., vol 7, Dec. 2019.
[31] U. Gulzar, S. Goriparti, E. Miele, T. Li, G. Maidecchi, A. Toma, F. D. Angelis, C. Capiglia and R. P. Zaccaria, “Next-generation textiles: from embeddedsupercapacitors to lithium ion batteries,” Journal of Materials Chemistry A., vol 4. pp.16771-16800, Sep, 2016.
[32] J. Ding, W. Hu, E. Paek and D. Mitlin, “Review of hybrid ion capacitors: from aqueous to lithium to sodium,” Journal of Chemical Reviews., vol 118, no. 14, pp. 6457-6498, Jun, 2018.
[33] J. Libich, J. Maca, J. Vondrak, O. Cech and M. Sedlarikova, “Supercapacitors: Properties and applications,” Journal of Energy Storage., vol 17, pp. 224-227, Jun, 2018.
[34] P. Shen, C. Wang, S. Jiang, X. Sun, and J. Zhang, “Supercapacitors’ applications,” in Electrochemical Energy: Advanced Materials and Technologies, 1st ed. Boca Raton, Florida, USA: CRC Press, 2017, pp. 479-491.
[35] F. J. Lin, M. S. Huang, S. G. Chen, C. W. Hsu, and C. H. Liang “Adaptive backstepping control for synchronous reluctance motor based on intelligent current angle control,” IEEE Trans. Power Electron., vol. 35, no. 7, pp. 7465–7479, Jul. 2020.
[36] F. J. Lin, Y. C. Hung, J. C. Hwang, I. P. Chang, and M. T. Tsai, “Digital signal processor-based probabilistic fuzzy neural network control of in-wheel motor drive for light electric vehicle,” IET Elec. Power Appl., vol. 6, no. 2, pp. 47-61, 2012.
[37] F. J. Lin, M. S. Huang, P. Y. Yeh, H. C. Tsai and C. H. Kuan, “DSP-based Probabilistic Fuzzy Neural Network Control for Li-ion Battery Charger,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3782-3794, 2012.
[38] F. J. Lin, S. G. Chen, and C. W. Hsu, “Intelligent backstepping control using recurrent feature selection fuzzy neural network for synchronous reluctance motor position servo drive system,” IEEE Trans. Fuzzy Syst., vol. 27, no. 3, pp. 413–427, Mar. 2019.
[39] F. J. Lin, Y. T. Liu, and W. A. Yu, “Power Perturbation Based MTPA with Intelligent Speed Controller for IPMSM Drive System,” IEEE Trans. Ind. Electron., vol. 65, no. 5, pp. 3677-3687, 2018.
指導教授 林法正(Faa-Jeng Lin) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明