博碩士論文 106521603 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:3.145.156.250
姓名 費新哲(Hsin-Che Fei)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 使用效率與功率提升技術之瓦特級三五族功率放大器設計
(Design of Watt-Level Ⅲ-Ⅴ Power Amplifier Using Efficiency and Power Enhancement Techniques)
相關論文
★ 微波及毫米波切換器及四相位壓控振盪器整合除三 除頻器之研製★ 微波低相位雜訊壓控振盪器之研製
★ 高線性度低功率金氧半場效電晶體射頻混波器應用於無線通訊系統★ 砷化鎵高速電子遷移率之電晶體微波/毫米波放大器設計
★ 微波及毫米波行進波切換器之研製★ 寬頻低功耗金氧半場效電晶體 射頻環狀電阻性混頻器
★ 微波與毫米波相位陣列收發積體電路之研製★ 24 GHz汽車防撞雷達收發積體電路之研製
★ 低功耗低相位雜訊差動及四相位單晶微波積體電路壓控振盪器之研究★ 高功率高效率放大器與振盪器研製
★ 微波與毫米波寬頻主動式降頻器★ 微波及毫米波注入式除頻器與振盪器暨射頻前端應用
★ 寬頻主動式半循環器與平衡器研製★ 雙閘極元件模型與微波及毫米波分佈式寬頻放大器之研製
★ 銻化物異質接面場效電晶體之研製及其微波切換器應用★ 微波毫米波寬頻振盪器與鎖相迴路之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-17以後開放)
摘要(中) 本論文主要為設計研製收發機前端之功率放大器,包含一個應用於Ku頻段的功率放大器以及三個操作於Ka頻帶的功率放大器。功率放大器是射頻發射系統中的重要元件,其重要性不言而喻。在發射機的前級電路中,調製振盪電路所産生的射頻信號功率很小,需要一系列的放大級獲得足夠的射頻功率以後,才能經由天線輻射出去。因此在發射端必須擁有一個穩定度高,效率高以及輸出飽和功率高的功率放大器。
第二章首先使用穏懋0.25 μm GaN製程設計一個應用於衛星通訊頻帶的功率放大器,使用兩級串接架構,第一級增益單元提升電路的整體功率增益,第二級增益單元使用Class-E的輸出負載匹配網路,從而實現較高的功率增進效率。量測時,電流較模擬小三分之一左右,量測得小信號最大增益為13.4 dB,3 dB頻寬為9 GHz~12.3 GHz。在12 GHz時的模擬飽和功率(Psat)為34.5 dBm,最大功率增進效率(PAE)為37.2 %,功率消耗為7.26 W,晶片面積為2.5×2 mm2。
在第三章我們討論關於功率放大器穩定度分析以及當電路發生低頻振盪時的除錯方法。本章使用穏懋0.1 μm GaAs(P1010)以及0.15 μm GaAs(P1522)製程分別設計兩個應用於5G(第五代行動通訊)頻帶的功率放大器。採用雙整合功率合成(Binary Power Combine)架構以及T模型匹配網路之功率放大器,量測得最大小訊號增益為8.5 dB,輸入1 dB增益壓縮點(IP1dB)約為16 dBm,輸出1 dB增益壓縮點(OP1dB)約為24 dBm,飽和功率(Psat)為25 dBm,功率消耗為3.11 W,晶片面積為2.5 × 2 mm2。採用中和穩定(Neutralization)架構之功率放大器,其量測得小訊號最大增益為13.6 dB,3 dB頻寬為26.6 GHz~30.6 GHz,模擬得輸出1 dB增益壓縮點(OP1dB)約為24.3 dBm,飽和功率(Psat) 為26.2 dBm,模擬得最大功率增益效率為23 %,功率消耗為1.34 W,晶片面積為2×1 mm2。
第四章使用穏懋0.15 μm GaAs(P1555)製程設計一個三級功率放大器,採用了預匹配(Pre-matching)之輸出匹配網路,使用該種輸出匹配方式,可以等效為單段高阻抗傳輸線的匹配,完成由低阻到高阻的阻抗轉換,能夠增加電路的頻寬並降低匹配網路的損耗。每一級放大單元皆串聯一組RC並聯電路來改善穩定度,第一、二級為增益單元以提升電路整體功率增益,第三級為功率輸出單元,採用電晶體兩兩並聯的方式,共合併四顆電晶體,以取得較高的飽和功率。同時加入奇模電阻以防止奇模振盪產生。量測得最大小訊號增益為16.9 dB,3 dB頻寬為24.5 GHz~30.7 GHz。模擬得輸入1 dB增益壓縮點(IP1dB)約為17 dBm,而輸出1 dB增益壓縮點(OP1dB)約為29.2 dBm,飽和功率(Psat)為32.2 dBm,功率消耗為9.81 W,晶片面積為3×2 mm2。
最後於第五章總結本篇論文所提出之電路與討論未來研究方向。
摘要(英) The purpose of this thesis is to design a power amplifier (PA) for the front-end of transceiver. Including a power amplifier for Ku band and three power amplifiers for Ka band. Power amplifier is an important component in RF system. In the front-end circuit of the transmitter, the RF signal power generated by the modulation is very small, and it needs a series of amplifier stages to obtain sufficient RF power to radiate by antenna. Therefore, it is necessary to have a power amplifier with high stability, high efficiency and high saturation output power in the transmitter system.
In Chapter 2, a Ku-band power amplifier using WIN 0.25 μm GaN process for digital satellite broadcasting application is presented. With two-stage topology and Class-E output matching network, the proposed can improve the overall power gain, and achieve high power-added efficiency (PAE). The measurement current is about one third less than the simulation. The small signal peak gain is 13.4 dB at 10.3 GHz, and 3-dB bandwidth from 9 GHz to 12.3 GHz. As the frequency 12 GHz, the simulated saturation output power (Psat) of 34.5 dBm, the peak PAE of 37.2 %. The power consumption is 7.26 W, and the chip size is 2.5×2 mm2.
In Chapter 3, the analysis of the stability is presented to solve the low-frequency oscillation. Two Ka-band power amplifiers for 5G (fifth generation mobile communication) application, using WIN 0.1 μm GaAs (P1010) and WIN 0.15 μm GaAs (P1522) processes. The power amplifier is designed using binary power combine and T-model matching network. With a dc power consumption of 3.11 W, the proposed power amplifier features small signal gain of higher than 8.5 dB, 1-dB gain compression point output power of 24 dBm, saturation output power of 25 dBm. The chip size of the power amplifier is 2.5×2 mm2. With the power amplifier of neutralization topology, the measured small signal gain is 13.6 dB, the 3-dB bandwidth from 26.6 GHz to 30.6 GHz. The simulated output power at 1-dB gain compression point is 24.3 dBm, the saturated output power is 26.2 dBm, the peak PAE is 23%. The power consumption is 1.34 W, the chip size is 2×1 mm2.
In chapter 4, a Ka-band three-stage power amplifier using pre-matching output network is designed by WIN 0.15 μm GaAs (P1555) process. By using this kind of output matching network can be equivalent to a single high impedance transmission line, the conversion from low impedance to high impedance can increase the 3-dB bandwidth and reduce the loss of the matching network. Each stage series a RC in parallel to improve stability, the first and second stages increase the power gain of the circuit, and the third stage combines four transistors in parallel as the power stage to obtain a higher output power. Odd-mode resistance is also used to prevent odd-mode oscillation. The measured small signal gain is 16.9 dB, the 3-dB bandwidth is from 24.5 GHz to 30.7 GHz. the simulated output 1-dB gain compression point is 29.2 dBm, the saturated output power is 32.2 dBm, the power consumption is 9.81 W, the chip size is 3×2 mm2.
Finally, in Chapter 5 we try to summarizes the proposed circuits and discuss the future research direction.
關鍵字(中) ★ 功率放大器
★ 三五族
★ 預匹配
關鍵字(英) ★ Power Amplifier
★ Ⅲ-Ⅴ group
★ pre-matching
論文目次 摘要 ix
Abstract xi
致謝 xiii
目錄 xiv
圖目錄 xvi
表目錄 xxii
第1章 緒論 1
1.1 研究動機與背景 1
1.2 現況研究及發展 2
1.3 論文貢獻 3
1.4 論文架構 4
第2章 Ku頻段功率放大器 5
2.1 簡介 5
2.2 穏懋0.25 μm GaN製程簡介 6
2.3 功率放大器設計介紹 7
2.3.1 E類輸出負載網路設計 7
2.3.2 電路設計 10
2.3.3 穩定度分析 22
2.4 電路量測結果 28
2.5 總結 37
第3章 應用於5G頻段之功率放大器 39
3.1 簡介 39
3.2 製程簡介 40
3.3 使用雙功率合併技術之功率放大器設計 41
3.3.1 電路設計 41
3.3.2 電路除錯與量測結果 48
3.3.3 分析結果與討論 55
3.4 使用中和穩定技術之功率放大器設計 56
3.4.1 電路設計 56
3.4.2 電路除錯與量測結果 70
3.4.3 分析結果與討論 77
3.5 總結 80
第4章 使用預匹配之輸出網路之功率放大器 82
4.1 簡介 82
4.2 穏懋0.15 μm GaAs (P1555)製程簡介 83
4.3 預匹配之輸出網路與電路設計 84
4.4 測試電路設計 98
4.5 電路量測結果與討論 100
4.6 總結 108
第5章 總結 111
參考文獻 113
參考文獻 [1] 武維疆。訊號、系統與通訊原理 (2017)。出版地點:五南。
[2] Satellite Earth Stations and Systems (SES); TeleVision Receive-Only (TVRO) satellite earth stations
[3] Satellite Earth Stations and Systems (SES); Satellite News Gathering Transportable Earth Stations (SNG TES) operating in the 11-12/13-14 GHz frequency bands.
[4] ETSI, "138 104 V15.7.0(2019-10)" https://www.etsi.org/deliver/etsi_ts. (July 24, 2020)
[5] Huawei, "5G Spectrum Public Policy Position," http://www.huawei.com/en/about-huawei/publicpolicy/5g-spectrum. (July 5, 2019)
[6] M. Khanpour et al., "A wideband W-band receiver front-end in 65nm CMOS," IEEE J. Solid-State Circuits, vol. 8, Aug. 2008, pp. 1717-1730.
[7] R. G. Freitag, "A unified analysis of MMIC power amplifier stability," MTT-S Int. Microw. Symp. Dig., 1992.
[8] L. Samoska et al., "On the stability of millimeter-wave power amplifiers," IEEE MTT-S Int. Microw. Symp. Dig., pp. 429-432 vol.1, 2002.
[9] Jeng-Han Tsai, Hong-Yeh Chang, Pei-Si Wu, Yi-Lin Lee, Tian-Wei Huang and Huei Wang, "Design and analysis of a 44-GHz MMIC low-loss built-in linearizer for high-linearity medium power amplifiers," IEEE Trans. Microw. Theory Tech., vol. 54, no. 6, pp. 2487-2496, June 2006.
[10] G. Lv, W. Chen, L. Chen and Z. Feng, "A Fully Integrated C-band GaN MMIC Doherty Power Amplifier with High Gain and High Efficiency for 5G Application," 2019 IEEE MTT-S Int. Microw. Symp. Dig., pp. 560-563, 2019.
[11] G. Lv, W. Chen and Z. Feng, "A Compact and Broadband Ka-band Asymmetrical GaAs Doherty Power Amplifier MMIC for 5G Communications," 2018 IEEE/MTT-S International Microwave Symposium, Philadelphia, PA, 2018, pp. 808-811.
[12] D. P. Nguyen T. Pham and Anh-Vu Pham, "A 28-GHz Symmetrical Doherty Power Amplifier Using Stacked-FET Cells" IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, Jun. 2018 pp. 2628-2637.
[13] X. A. Nghiem, J. Guan, and R. Negra, "Design of a broadband three-way sequential Doherty power amplifier for modern wireless communications," in IEEE MTT-S Int. Microw. Symp. Dig., 2014 pp. 1–4.
[14] C. Y. Law and A.-V. Pham, "A high gain 60 GHz power amplifier with 20 dBm output power in 90 nm CMOS," in Int. Solid-State Circuits Conf. Tech. Dig., Feb. 2010, pp. 426–427.
[15] D. Sandstrom, B. Martineau, M. Varonen, M. Karkkainen, A. Cathelin, and K. A. I. Halonen, "94GHz power-combining power amplifier with 13 dBm saturated output power in 65 nm CMOS," in IEEE RFIC Symp., pp. 1–4, Jun. 2011.
[16] M. Roberg, S. Schafer, O. Marrufo and T. Hon, "A 2-20 GHz Distributed GaN Power Amplifier Using a Novel Biasing Technique," in IEEE Int. Microw. Symp. Dig., pp. 1-3, Jun. 2019.
[17] J. Komiak et al., "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and no FP technology," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, Jun. 5-10, 2011.
[18] K. Datta, J. Roderick, H. Hashemi, "A triple-stacked Class E mm-wave SiGe HBT power amplifier," in IEEE Int. Microw. Symp. Dig., pp.1-3, June 2013.
[19] D. P. Nguyen, T. Pham, B. L. Pham, and A.-V. Pham, "A high efficiency high power density harmonic-tuned Ka-band stacked-FET GaAs power amplifier," in Proc. IEEE Compound Semiconductor Integr. Circuit Symp. (CSICS), Oct. 2016, pp. 1-4.
[20] C. Lin and H. Chang, "A Broadband Injection-Locking Class-E Power Amplifier," IEEE Trans. Microw. Theory Tech., vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[21] G. Collins et al., "C-Band and X-Band Class F, F-1 GaN MMIC PA Design for Envelope Tracking Systems," 45th European Microwave Conference, pp. 1172-1175.
[22] T. Senju, K. Takagi, H. Kimura, "A 2 W 45 % PAE X-Band GaN HEMT Class-F MMIC Power Amplifier," 2018 Asia-Pacific Microwave Conference (APMC), Kyoto, 2018, pp. 956-958.
[23] T. Li and H. Wang, "A Continuous-Mode 23.5-41GHz Hybrid Class-F/F-l Power Amplifier with 46% Peak PAE for 5G Massive MIMO Applications," 2018 IEEE RFIC Symp., pp. 220-230, 2018.
[24] J. Tsai, Y. Cheng, C. Hung, K. Chiang and W. Li, "A 37–40 GHz power amplifier for 5G phased array applications using 0.1-μm GaAs pHEMT process," 2017 IEEE ICCE, pp. 85-87, 2017.
[25] N. Estella, E. Camargo, J. Schellenberg and L. Bui, "High-Efficiency, Ka-band GaN Power Amplifiers," 2019 IEEE MTT-S Int. Microw. Symp., pp. 568-571, 2019.
[26] P. Neininger, L. John, P. Brückner, C. Friesicke, R. Quay and T. Zwick, "Design, Analysis and Evaluation of a Broadband High-Power Amplifier for Ka-Band Frequencies," 2019 IEEE MTT-S Int. Microw. Symp., pp. 564-567, 2019.
[27] H. Jeong, T. Yoon, H. Yoo, H. Jung and S. Cho, "A Highly Efficient and Compact 6kW GaN Solid-State Microwave Generator for CW 2.45GHz Applications," 2019 IEEE MTT-S Int. Microw. Symp., pp. 572-575, 2019.
[28] C. F. Campbell, Y. Liu, M. Kao and S. Nayak, "High efficiency Ka-band Gallium Nitride power amplifier MMICs," IEEE COMCAS, pp. 1-5, 2013.
[29] P. Blount, S. Huettner and B. Cannon, "A High Efficiency, Ka-Band Pulsed Gallium Nitride Power Amplifier for Radar Applications," CSICS, pp. 1-4, 2016.
[30] M. Roberg, T. R. Mya Kywe, M. Irvine, O. Marrufo and S. Nayak, "40 W Ka-Band Single and Dual Output GaN MMIC Power Amplifiers on SiC," BCICTS, pp. 140-143, 2018.
[31] 穩懋 NP25-00 0.25 μm GaN HEMT Power Design Manual
[32] N. O. Sokal and A. D. Sokal, "Class E-A new class of high-efficiency tuned single-ended switching power amplifiers," IEEE J. Solid-State Circuits, vol. 10, no. 3, pp. 168-176, Jun. 1975.
[33] 紀建榮「使用具自動增益控制之高效率高功率寬頻放大器及Doherty功率放大器之研製」,國立中央大學,碩士論文,民國105年。
[34] H. Chang, C. Lin, Y. Liu, W. Li and Y. Wang, "A 2.5 GHz High Efficiency High Power Low Phase Noise Monolithic Microwave Power Oscillator," IEEE Microwave and Wireless Components Letters, vol. 25, no. 11, pp. 730-732, Nov. 2015.
[35] C. Lin and H. Chang, "A Broadband Injection-Locking Class-E Power Amplifier," IEEE Transactions on Microwave Theory and Techniques, vol. 60, no. 10, pp. 3232-3242, Oct. 2012.
[36] 邱煥凱。ADS應用於射頻功率放大器設計與模擬 (2014)。新竹市:國立清華大學出版社。
[37] Y. Niida et al., "X-Ku Wide-Bandwidth GaN HEMT MMIC Amplifier with Small Deviation of Output Power and PAE," 2014 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), La Jolla, CA, 2014, pp. 1-4.
[38] D. Kim, H. Park, S. Eom, J. Jeong, H. Cha, and K. Seo, "Ka Band MMIC Using AlGaN/GaN on Si With Recessed High k Dual MIS Structure," IEEE Electron Device Letters, vol. 39, no. 7, pp. 995-998, 2018.
[39] G. C. Barisich, E. Gebara, H. Gu, C. Storey, P. Aflaki and J. Papapolymerou, "Reactively matched 3-stage C-X-Ku band GaN MMIC power amplifier," 2017 12th European Microwave Integrated Circuits Conference (EuMIC), Nuremberg, 2017, pp. 93-96.
[40] "TGA2598 data sheet," Qorvo, 2015.
[41] J. Komiak et al., "Decade bandwidth 2 to 20 GHz GaN HEMT power amplifier MMICs in DFP and no FP technology," IEEE MTT-S Int. Microw. Symp. Dig., pp. 1-4, Jun. 5-10, 2011.
[42] U. Schmid et al., "Ultra-wideband GaN MMIC chip set and high power amplifier module for multi-function defense AESA applications," IEEE Trans. Microw. Theory Tech., vol. 61, no. 8, Aug. 2013, pp. 3043-305.
[43] M. Coffey et al., “A 4.2-W 10-GHz GaN MMIC Doherty power amplifier,” in Proc. IEEE Compound Semiconductor Integr. Circuit Symp., Oct. 2015, pp. 1-4.
[44] 穏懋PP10-10 0.1 μm 2 mil pHEMT PW Design Manual
[45] 穩懋 PP15-22 0.15 μm GaAs pHEMT PW Design Manual
[46] P.-C. Huang, Z.-M. Tsai, K.-Y. Lin, H. Wang, "A 17–35 GHz Broadband, High Efficiency PHEMT Power Amplifier Using Synthesized Transformer Matching Technique," IEEE TMTT, Jan 2012, vol. 60, pp. 112-119.
[47] K. Wang, Y. Yan and X. Liang, "A K-band power amplifier in a 0.15-um GaAs pHEMT process," IEEE MTT-S IWS, Chengdu, 2018, pp. 1-3.
[48] 簡子涵「W頻帶40奈米金氧半場效應電晶體低雜訊放大器暨Ka頻帶砷化鎵功率放大器之研製」,國立中央大學,碩士論文,民國 107 年。
[49] W. Huang, J. Lin, Y. Lin and H. Wang, "A K-Band Power Amplifier with 26-dBm Output Power and 34% PAE with Novel Inductance-based Neutralization in 90-nm CMOS," 2018 IEEE RFIC, Philadelphia, PA, 2018, pp. 228-231.
[50] J. Wang, Y. Lin, Y. Hsiao, K. Yeh and H. Wang, "A V-band power amplifier with transformer combining and neutralization technique in 40-nm COMS," 2017 IEEE International Symposium on Radio-Frequency Integration Technology (RFIT), Seoul, 2017, pp. 113-116.
[51] 林朝正、李奇容「60GHz Marchand Balun設計」,民國 101 年。
[52] D. Kim, H. Park, S. Eom, J. Jeong, H. Cha, and K. Seo, "KaBand MMIC Using AlGaN/GaN on Si With Recessed High k Dual MIS S tructure," IEEE Electron Device Letters, vol. 39, no. 7, pp. 995 998, 2018.
[53] S. Kang, M. Jeon and J. Kim, "Highly Efficient 5.15- to 5.85-GHz Neutralized HBT Power Amplifier for LTE Applications," in IEEE Microwave and Wireless Components Letters, vol. 28, no. 3, pp. 254-256, March 2018.
[54] H Yu Lin and W T Li, "A Ka Band Power Amplifier with Phase Compensation Technique Applied to 5G Phased Array", IEEE Asia Pacific Microw. Conf., pp. 61-63, 2018
[55] Y. Lin, J. Ji, T. Chien, H. Chang and Y. Wang, "A Ka-band 25-dBm output power high efficiency monolithic Doherty power amplifier in 0.15-μm GaAs E-mode pHEMT process," IEEE APMC, Kuala Lumpar, 2017, pp. 984-987.
[56] H. Alsuraisry, S. Yen, J. Tsai and T. Huang, "Ka-band up-link CMOS/GaAs power amplifier design for satellite-based wireless sensor," 2017 Topical Workshop on Internet of Space (TWIOS), Phoenix, AZ, 2017, pp. 1-3.
[57] J. Tsai, Y. Cheng, C. Hung, K. Chiang and W. Li, "A 37–40 GHz power amplifier for 5G phased array applications using 0.1-μm GaAs pHEMT process," IEEE 7th International Conference on Consumer Electronics, Berlin, 2017, pp. 85-87.
[58] 穩懋 PP15-55 0.15 μm GaAs pHEMT PW Design Manual
[59] D. P. Nguyen, T. Pham and A. Pham, "A 28-GHz Symmetrical Doherty Power Amplifier Using Stacked-FET Cells," IEEE Trans. Microw. Theory Tech., vol. 66, no. 6, pp. 2628-2637, June 2018.
[60] R. G. Freitag, "A Unified Analysis of MMIC Power Amplifier Stability", MlT S Int l Microw. Symp. Dig 1992.
[61] I. Huang et al., "A 29.6 dBm 29-GHz Power Amplifier for Satellite and 5G Communications Using 0.15-μm GaAs p-HEMT Technology," 2018 Asia-Pacific Microw. Conf., pp. 986-988, 2018.
[62] H. Alsuraisry, T. Chang, J. Tsai and T. Huang, "A 38GHz 27dBm power amplifier in enhancement mode GaAs PHEMT technology," 2017 Global Symp. Millimeter-Waves, pp. 85-86, 2017.
[63] D. P. Nguyen, T. Pham, B. L. Pham, and A. V. Pham, "A high efficiency high power density harmonic tuned Ka band stacked FET GaAs power amplifier," in Proc. IEEE Compound Semiconductor Integr. Circuit Symp., Oct. 2016, pp. 1-4.
[64] Y A Lin, J R Ji, T H Chien, H Y Chang and Yu Chi Wang, "A Ka band 25 dBm output power high efficiency monolithic Doherty power amplifier in 0.15 μm GaAs E mode pHEMT process", IEEE Asia Pacific Microw. Conf., pp. 984-987, 2017
[65] D. P. Nguyen, A. Pham, "An ultra compact watt-level Ka band stacked FET power amplifier," IEEE Microw. Wireless Comp. Lett., vol.26, no.7, pp. 516 518, July 2016.
[66] X. A. Nghiem, J. Guan, and R. Negra, “Design of a broadband three way sequential Doherty power amplifier for modern wireless communications,” in IEEE MTT-S Int. Microw. Symp. Dig., 2014 pp. 1-4
指導教授 張鴻埜(Hong-Yeh Chang) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明