博碩士論文 107524001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:45 、訪客IP:3.139.81.220
姓名 林亞萱(Ya-Hsuan Lin)  查詢紙本館藏   畢業系所 網路學習科技研究所
論文名稱 利用智慧 Ubiquitous Geometry App 輔助真實情境國小幾何學習與探討其對學習成效之影響
(Investigating the Influence of Smart Ubiquitous Geometry on Geometry Learning of Elementary School Students in Authentic Contexts)
相關論文
★ 同步表演機器人之建構與成效評估★ 探討國小學童使用電子書多媒體註記系統結合註記分享機制對其學習行為與時間之影響
★ 先備知識對註記式多媒體電子書的影響研究:從個別環境到分享環境★ Facilitating EFL speaking and writing with peer-tutoring and storytelling strategies in authentic learning context
★ An investigation into CKEL-supported EFL learning with TPR to reveal the importance of pronunciation and interactive sentence making★ Investigation of Facilitating Physics Learning using Ubiquitous-Physics APP with Learning Map and Discussion Board in Authentic Contexts
★ 智慧互動SmartVpen在真實情境對於英文學習之影響★ 利用合作虛擬化的網絡設計輔助計算機網路學習
★ 探討擴展合作式多媒體認知理論和其對EFL聽力與口語能力之影響 - 結合動覺辨識和學習者設計內容之猜謎遊戲★ 在真實情境中利用智慧機制提升國小學生之外語口說及對話能力之評估
★ 探討在真實情境下教師回饋對學習認知與學習持續性之影響★ 註釋、對話代理和協作概念圖支持大學生議論文寫作和後設認知的培養
★ Developing and Validating the Questionnaire and Its Model for Sustainable and Scalable Authentic Contextual Learning Supported by Mobile Apps★ 探討個人化、情境化及社會化的智慧機制 輔助真實情境國小幾何學習與其對學習成效之影響
★ Investigation of smart mechanisms for authentic contextual learning with sensor and recognition technologies★ 探討智慧回饋如何影響學習時眼動和觸控 操作的表現-以 Covid-19 快篩模擬為例
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-20以後開放)
摘要(中) 如今,隨著先進技術的推動,“Smart”元素的設計和應用已成為教育領域有前瞻性的研究問題。 在這項研究中,“Smart”包括兩個重要方面:促進學習者使用先進的系統和機制進行 Smart learning; 以及系統和機制本身也會變得越來越聰明。對學生來說重要的是,通過豐富自身探索和應用學習者周圍真實場景的經驗,鞏固對幾何的理解和學習。 在這項研究中,提出了一種用於平板設備的系統,稱為 Smart-UG,此系統可以協助小學生在真實環境中進行幾何學習。Smart-UG中提出了四種智慧機制,即方向指導,學習進度,物件辨識和答案回饋,以指導學生在真實環境中智慧的學習且有意義地測量和應用幾何。 此外,隨著學生在Smart-UG上使用的學習時間越久,系統可收集到的數據量就越大,Smart-UG系統也就越智能。此外,本研究還強調學習活動的重要作用,通過設計教師中心和學生中心活動,幫助學生在真實的情境中積極探索相關的幾何場景。
在這項研究中,對學習者的學習成績進行了調查,以了解他們在不同的教學方法下是否有所不同。這項研究的學習成果分為三個重要的能力:“幾何能力”,“估計能力”和“VanHiele幾何思考能力”。進一步的調查是關於哪些學習行為可能會影響學習者的學習成績。研究結果發現,後測的幾何能力與估算能力中實驗組皆優於傳統教學組以及控制組(使用UG )。而在學習行為分析中結果顯示,在學生測量練習中的錯誤率越低以及尋找物件的時間越少,會與幾何能力呈現高度相關;而學生查看學習進度的次數以及在 Student-centered 活動中的練習次數是影響估算能力的重要關鍵;而在 Van Hiele思考能力方面則是與尋找物件的時間呈現高度相關。最後進行了學習者對於 Smart-UG 的使用感想,多數的學生對於使用 Smart-UG 表達肯定的實用性以及高度的使用意圖。
摘要(英) With the facilitation of advanced technologies nowadays, the design and application of “smart” factors become promising research issues in education. In this study, “smart” consists two important aspects: facilitating learners to learn smartly with advanced system and mechanisms; and the advance system and mechanisms themselves becoming smarter and smarter. Since it is important to learners to consolidate geometry understanding and learning through enriching own experience of exploring and applying related geometry scenarios surrounding learners. In this study, an app for tablet devices, called Smart-UG, was proposed to support elementary learner’s geometric learning in authentic contexts. There are four smart mechanisms proposed in Smart-UG, direction guidance, learning progress, object recognition and answer feedback, to guide learners’ measuring and applying geometry smartly and meaningful in authentic contexts. Besides, the more learning time learners spent with Smart-UG, the bigger amount of collected data and smarter Smart-UG system became. Furthermore, this study also emphasis the important role of learning activities to help learners actively exploring related geometry scenarios in authentic contexts by designing teacher-centered and student-centered activities.
In this study, the learners′ learning achievements were investigated to know whether they are different under different teaching methods. The learning achievements of this study were divided to three important ability: “Geometry ability”, “Estimation ability”, and “Van Hiele”. The further investigation was on what learning behaviors might affect learners’ learning achievements. The results of the study showed that both in the geometry ability and estimation ability, experimental group were superior to the traditional teaching group and the control group that use UG system without smart mechanisms. The results of the learning behavior analysis show that the lower the error rate in the learner′s measurement practice was and the less time it took to find the object, there were highly correlated with the geometry ability. For estimation ability, the number of learners view learning progress and the number of practices in Student-centered activity were important keys. Moreover, Van Hiele was highly related to the time to find objects. Finally, the learner′s impression of the use of Smart-UG revealed that most of the learners expressed positive practicality and high intention to use Smart UG.
關鍵字(中) ★ 情境學習
★ 幾何學習
★ 智慧機制
★ 物件辨識
★ 行動學習
★ 幾何學習成效
關鍵字(英) ★ authentic learning
★ geometry learning
★ smart mechanism
★ object recognition
★ geometry learning achievement
★ geometry estimation ability
論文目次 中文摘要 i
Abstract iv
List of content vi
List of Figure viii
List of Table ix
Chapter 1 Introduction 1
1.1 Research background and motivation 1
1.2 Definition of Term 3
1.3 Research questions 3
Chapter 2 Literature Review 5
2.1 Authentic contextual learning for Geometry 5
2.2 Smart learning in authentic contexts 7
2.3 Recognition and sensors technologies facilitate smart learning 8
2.4 Learning behaviors and activities design for active engagement in authentic contexts 9
2.5 Questionnaire design for smart learning in authentic contexts 11
Chapter 3 System Design and Implementation 12
3.1 Ubiquitous Geometry (UG) system 12
3.2 Smart Hint 17
3.2.1 Hint 1 “Direction Guidance” 18
3.2.2 Hint 2 “Learning Progress” 19
3.2.3 Hint 3 “Object Recognition” 20
3.2.4 Hint 4 “Answer Feedback” 21
3.3 Learning Activity Module 22
3.3.1 Learning of geometric concepts 23
3.3.2 Teacher-centered activity 25
3.3.3 Mix-centered activity 26
3.3.4 Student-centered activity 27
Chapter 4 Method 29
4.1 Participants 29
4.2 Research Framework 29
4.3 Experimental procedure 31
4.4 Experimental Instruments 34
4.5 Learning behavior data 38
4.6 Data analysis approach 39
Chapter 5 Results 41
5.1 Analysis of learning achievement 41
5.1.1 Geometry ability analysis among three groups 41
5.1.2 Geometry estimation ability analysis among three groups 43
5.1.3 Van Hiele analysis among three groups 45
5.2 Relationship between learning behaviors and learning achievements 46
5.2.1 Comparison between experimental group and control group (UG) in learning behavior 46
5.2.2 Correlation of learning behaviors and activity performance with geometry ability, estimation ability and Van Hiele 48
5.2.3 Prediction of the dependent variables to learning achievements 50
5.3 Learners’ perception of Smart-UG 54
5.4 Implication and suggestion 57
Chapter 6 Conclusion 59
Reference 61
Appendix A: pre-test (Geometry ability) 63
Appendix B: pre-test (Estimation ability) 65
Appendix C: pre-test (Van Hiele) 66
Appendix D: Post-test (Geometry Ability) 69
Appendix E: Post-test (EstimationAbility) 71
Appendix F: Post-test (Van Hiele) 72
Appendix G: Smart-TAM questionnaire 75
Appendix H: Learner semi-structured interview question 76
參考文獻 [1] Post, T. R., Harel, G., Behr, M., & Lesh, R. (1991). Intermediate teachers’ knowledge of rational number concepts., 177-198.
[2] Zhu, Z.-T., Yu, M.-H., & Riezebos, P. (2016). A research framework of smart education. Smart learning environments, 3(1), 4.
[3] Chen, C. C., & Huang, T. C. (2012). Learning in a u-Museum: Developing a context-aware ubiquitous learning environment. Computers & Education, 59(3), 873-883
[4] Reeves, T. C., Herrington, J., & Oliver, R. (2002). Authentic activities and online learning.
[5] Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., & Jermiin, L. S. (2019). Sensitivity and specificity of information criteria. bioRxiv, 449751.
[6] Chang, P., Tsai, C.-C., & Chen, P.-j. (2019). Organization Strategies in EFL Expository Essays in a Content-Based Language Learning Course. The Asia-Pacific Education Researcher, 1-15.
[7] Li, H.-C., & Tsai, T.-L. (2018). Investigating Teacher Pedagogical Changes When Implementing Problem-Based Learning in a Year 5 Mathematics Classroom in Taiwan. The Asia-Pacific Education Researcher, 27(5), 355-364.
[8] Wong, T. J., Lim, F. J., Gao, M., Lee, G. H., & Ho, G. W. (2013). Photocatalytic H 2 production of composite one-dimensional TiO 2 nanostructures of different morphological structures and crystal phases with graphene. Catalysis Science & Technology, 3(4), 1086-1093.
[9] Van Hiele, P. M. (1986). Structure and insight: A theory of mathematics education.
[10] Cathcart, W. G. (2006). Learning mathematics in elementary and middle schools: A learner-centereded approach. Prentice Hall.
[11] Van de Walle, J. A. (1990). Elementary School Mathematics, Teaching Developmentally. Addison-Wesley/Longman, Route 128, Reading, MA 01867.
[12] McClintock, E., Jiang, Z., & July, R. (2002). Students’ development of three-dimensional visualization in the Geometer’s Sketchpad environment. ERIC
[13] Zhao, L., Hwang, W.-Y., Shadiev, R., Lin, L.-K., Shih, T. K., & Chen, H.-R. (2018). Exploring the Effects of Ubiquitous Geometry Learning in Real Situations. Paper presented at the Proceedings of the 2nd International Conference on Digital Technology in Education.
[14] Hwang, W.-Y., Hoang, A., & Tu, Y.-H. (2019). Exploring Authentic Contexts with Ubiquitous Geometry to Facilitate Elementary School Learners′ Geometry Learning. The Asia-Pacific Education Researcher, 1-15.
[15] Zhu, Z.-T., Yu, M.-H., & Riezebos, P. (2016). A research framework of smart education. Smart learning environments, 3(1), 4.
[16] Sriraman, B., & English, L. (2009). Theories of mathematics education: Seeking new frontiers: Springer Science & Business Media.
[17] R. Siegwart and I. R. Nourbakhsh, Introduction to Autonomous Mobile Robots, Massachusetts Institute of Technology, The MIT Press, 2004.
[18] Shakur A and Sinatra T 2013 Angular momentum Phys. Teach. 51 564
[19] Umek A and Kos A 2016 Validation of smartphone gyroscopes for mobile biofeedback application Pers. Ubiquit. Comput. 20 657
[20] Lamer, J., Cymbalak, D., & Jakab, F. (2013, October). Computer vision based object recognition principles in education. In 2013 IEEE 11th International Conference on Emerging eLearning Technologies and Applications (ICETA) (pp. 253-257). IEEE.
[21] Hubalovsky, S., Hubalovska, M., & Musilek, M. (2019). Assessment of the influence of adaptive E-learning on learning effectiveness of primary school pupils. Computers in Human Behavior, 92, 691-705.
[22] Cukurova, M., Luckin, R., Millán, E., & Mavrikis, M. (2018). The NISPI framework: Analysing collaborative problem-solving from learners′ physical interactions. Computers & Education, 116, 93-109.
[23] Dziak, J. J., Coffman, D. L., Lanza, S. T., Li, R., & Jermiin, L. S. (2019). Sensitivity and specificity of information criteria. bioRxiv, 449751.
[24] Shymansky, J. A., & Penick, J. E. (1981). Teacher behavior does make a difference in hands‐on science classrooms. School Science and Mathematics, 81(5), 412-422.
[25] Felder, R. M., & Brent, R. (2004). The intellectual development of science and engineering learners. Part 1: Models and challenges. Journal of Engineering Education, 93(4), 269-277.
[26] Abu-Dalbouh, H. M. (2013). A questionnaire approach based on the technology acceptance model for mobile tracking on patient progress applications. JCS, 9(6), 763-770.
[27] Adams, D. A., Nelson, R. R., & Todd, P. A. (1992). Perceived usefulness, ease of use, and usage of information technology: A replication. MIS quarterly, 227-247.
[28] Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.
指導教授 黃武元(Wu-Yuin Hwang) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明