博碩士論文 107521020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:117 、訪客IP:18.218.231.89
姓名 楊欣諭(Shin-Yu Yang)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 基於靜息態功能性磁振造影之分率低頻振幅波 動和區域同質性於缺血性腦中風之研究
(Study on Fractional Amplitude of Low-frequency Fluctuations and Regional Homogeneity Based on Resting State Functional Magnetic Resonance Imaging in Ischemic Stroke)
相關論文
★ 電子式基因序列偵測晶片之原型★ 眼動符號表達系統之可行性研究
★ 利用網印碳電極以交流阻抗法檢測糖化血紅素★ 電子式基因序列偵測晶片可行性之研究
★ 電腦化肺音擷取系統★ 眼寫鍵盤和眼寫滑鼠
★ 眼寫電話控制系統★ 氣喘肺音監測系統之可行性研究
★ 肺音聽診系統之可行性研究★ 穿戴式腳趾彎曲角度感測裝置之可行性研究
★ 注音符號眼寫系統之可行性研究★ 英文字母眼寫系統之可行性研究
★ 數位聽診器之原型★ 使用角度變化率為基準之心電訊號壓縮法
★ 電子式基因微陣列晶片與應用電路研究★ 電子聽診系統應用於左右肺部比較之臨床研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的是利用區域同質性(Regional homogeneity, ReHo)和分率低頻振幅波動(Fractional amplitude of low-frequency fluctuations, fALFF)來探究神經影像上缺血性腦中風後各腦區的自發性活動狀況與中風後恢復狀況之間的關聯。
通常,大腦梗塞後六個月內是復健治療的黃金期,尤其是前三個月恢復效果最為明顯。因此,我們募集缺血性大腦中風患者於中風後7天內、1個月、3個月之靜息態功能性磁振造影,探究其在典型頻帶(0.01–0.08 Hz)範圍的ReHo和fALFF,將之與復健量表進行相關性分析,及相對於年紀、性別匹配正常對照組進行統計分析。參與本研究的包括14位腦梗塞位於腦幹(Brain stem),以及17位腦梗塞位於皮質及/或皮質下層(Cortical–subcortical)的患者。
以下這兩項是本研究的主要的結果。第一,基於體素分析(Voxel-based analysis),腦梗塞病人與正常對照組的全腦ReHo或fALFF之雙樣本t檢定結果在許多腦區有顯著差異,這現象可能是病側或對側的神經網路遭到腦梗塞所破壞,或者在恢復過程中出現腦功能網路的重組和重新佈線整合。第二,基於感興趣區的分析(ROI-based analysis),經由斯皮爾曼相關分析(Spearman correlation analysis)發現,在有些感興趣腦區其ReHo或fALFF之腦梗塞後一個月時相對於中風後七天內的變化與復健量表中風後三個月時相對於腦梗塞後一個月時的變化兩者之間有顯著相關,此結果表示在這些腦區有可能藉由在腦梗塞後7天內和1個月時的ReHo或fALFF推估腦梗塞後3個月時復健量表所表徵的康復狀況。
本研究的結果可望輔助神經內科醫師在臨床預後上更準確的預後腦梗塞中風病人的恢復狀況,因而有助於診療決策之提出。
摘要(英) The purpose of this study is to use regional homogeneity (ReHo) and fractional amplitude of low-frequency fluctuations (fALFF) methods to explore the relationship between the spontaneous brain activity and recovery status after acute ischemic stroke.
Usually, the golden period of rehabilitation treatment after cerebral infarction is within the first six months, especially in the first three months. Therefore, we collected the functional MRI scans of patients with ischemic cerebral stroke within 7 days, 1 month, and 3 months after stroke, and measured the ReHo and the fALFF in the typical frequency band within 0.01–0.08 Hz. We compared the stroke patients’ ReHo or fALFF with the rehabilitation scale; The ReHo and fALFF of the patients and those of the control group are also compared. Patients in this study included 14 with the lesion in the brain stem and 17 with the lesion in the cortical–subcortical region.
The following two are the main results of this research. First, in terms of voxel-based analysis, there are significant differences in the two-sample t test results of the whole-brain ReHo or fALFF between stroke patients and normal people in several brain regions. This phenomenon may be due to that the ipsilateral or contralateral neural network of the lesion was damaged by cerebral infarction, or the reorganization and rewiring of the brain function network occurred during the recovery process. Second, in terms of ROI-based (region of interestbased) analysis, Spearman correlation analysis found that, in some brain ROIs, the changes of the ReHo or the fALFF measured 1 month after stroke relative to that measured within 7 days after stroke have a significant correlation with the changes in the rehabilitation scale at 3 months after stroke and at 1 month after stroke. This result indicates that these brain ROI’s ReHo or fALFF measured within 7 days and in 1 month after stroke may be used to predict the rehabilitation status represented by the rehabilitation scale at 3 months after stroke.
The results of this study are expected to assist neurologists in predicting the patient’s recovery status after stroke more accurately in terms of clinical prognosis, thus contributing to diagnosis and treatment decisions.
關鍵字(中) ★ 缺血性腦中風
★ 靜息態功能性磁振造影
★ 區域同質性
★ 分率低頻振幅波動
關鍵字(英) ★ Ischemic Stroke
★ Resting State Functional Magnetic Resonance Imaging
★ Regional Homogeneity
★ fractional Amplitude of Low-Frequency Fluctuation
論文目次 摘要 i
Abstract iii
誌謝 v
目錄 vi
圖目錄 ix
表目錄 xii
第一章 導論 1
1.1 前言 1
1.2 研究背景 4
1.3 功能連接 5
1.3.1 區域同質性 5
1.3.2 分率低頻振幅波動 7
1.4 中風復健評估量表 8
1.4.1 傅格-梅爾評估量表 8
1.4.2 雷氏修正量表 9
1.4.3 巴氏量表 10
1.4.5 功能性由口進食量表 11
1.5 論文研究架構 12
第二章 材料與方法 13
2.1 篩選條件 13
2.2 fMRI數據採集 17
2.3 fMRI數據預處理 18
2.4 ReHo測量和 fALFF測量 19
2.5 雙樣本檢定 20
2.6 相關性分析 21
第三章 結果 23
3.1 參與者特徵 23
3.2 感興趣區域之雙樣本檢定 31
3.3 斯皮爾曼相關性分析 43
3.3.1 所有大腦中風之區域同質性相關性分析 49
(一)與傅格-梅爾評估量表之區域同質性的相關性分析 49
(二)與雷氏修正量表之區域同質性的相關性分析 50
(三)與巴氏量表之區域同質性的相關性分析 51
(四)與伯格平衡量表之區域同質性的相關性分析 54
3.3.2 左側大腦中風之區域同質性的相關性分析 58
(一) 與傅格-梅爾評估量表之區域同質性的相關性分析 58
(二)與巴氏量表之區域同質性的相關性分析 59
(三)與伯格平衡量表之區域同質性的相關性分析 62
3.3.3 所有大腦中風之分率低頻振幅波動相關性分析 64
(一) 與傅格-梅爾評估量表之分率低頻振幅波動的相關性分析 64
(二)與巴氏量表之分率低頻振幅波動的相關性分析 71
(三)與伯格平衡量表之分率低頻振幅波動的迴歸分析 75
3.3.4 左側大腦中風之分率低頻振幅波動相關性分析 80
(一) 與傅格-梅爾評估量表之分率低頻振幅波動的相關性分析 80
(二)與巴氏修量表之分率低頻振幅波動的相關性分析 86
(三)與伯格平衡量表之分率低頻振幅波動的相關性分析 88
3.4 區域同質性的雙樣本t檢定 91
3.4.1 翻轉影像使左腦為病灶側區域同質性的雙樣本t檢定 91
3.4.2 左側中風之區域同質性的雙樣本t檢定 99
3.4.3 右側大腦中風之區域同質性的雙樣本檢定 104
3.5 分率低頻振幅波動的雙樣本t檢定 110
3.5.1 翻轉影像使左腦為病灶側分率低頻振幅波動的雙樣本t檢定 110
3.5.2 左側中風之分率低頻振幅波動的雙樣本t檢定 115
3.5.3 右側大腦中風之分率低頻振幅波動的雙樣本t檢定分析 120
3.6 區域同質性和傅格-梅爾評估量表的相關性 125
3.6.1 翻轉影像使左腦為病灶側之區域同質性的相關性 125
3.6.2 左側大腦中風之區域同質性的相關性 129
3.7 分率低頻振幅波動和傅格-梅爾評估量表間的相關性 132
3.7.1 翻轉影像使左腦為病灶側之分率低頻振幅波動的相關性 132
3.7.2 左側大腦中風之分率低頻振幅波動的相關性 136
第四章 討論 140
4.1 相關文獻討論 141
4.2 感興趣區域之雙樣本檢定 161
4.3 感興趣區域之相關性 166
4.4 基於體素之雙樣本檢定 168
4.5 中風患者與傅格-梅爾評估量表的相關性 175
第五章 結論與未來展望 179
參考文獻 182
附錄 193
附錄一、神經影像應用於缺血性中風復健評估量表 193
附錄二、大腦中風部位位於腦幹患者 208
附錄三、大腦中風部位位於皮質及/或皮質下層患者 209
參考文獻 〔1〕 C. Stinear, “Prediction of recovery of motor function after stroke,” The Lancet Neurology, vol. 9, pp. 1228–1232, 2010.
〔2〕 H. Sun, X. Zou, and L. Liu, “Epidemiological factors of stroke: A survey of the current status in China,” Journal of stroke, vol. 15, pp. 109–114, 2013a.
〔3〕 D. Cordes, V. M. Haughton, K. Arfanakis, J. D. Carew, P. A. Turski, C. H. Moritz et al., “Frequencies contributing to functional connectivity in the cerebral cortex in “resting-state” data,” American Journal of Neuroradiology, vol. 22, no. 7, pp. 1326–1333, 2001.
〔4〕 D. S. Margulies, J. Böttger, X. Long, Y. Lv, C. Kelly, A. Schäfer et al., “Resting developments: a review of fMRI post-processing methodologies for spontaneous brain activity,” Magnetic Resonance Materials in Physics, Biology and Medicine, vol. 23, no. 5-6, pp. 289–307, 2010.
〔5〕 R. I. Goldman, J. M. Stern, J. J. Engel, M. S. Cohen, “Simultaneous EEG and fMRI of the alpha rhythm,” Neuroreport, vol. 13, pp. 2487-2492, 2002.
〔6〕 N. K. Logothetis, J. Pauls, M. Augath, T. Trinath, A. Oeltermann, “Neurophysiological investigation of the basis of the fMRI signal,” Nature, vol. 412, pp. 150-157, 2001.
〔7〕 H. Lu, Y. Zuo, H. Gu, J.A. Waltz, W. Zhan, C.A. Scholl, et al., “Synchronized delta oscillations correlate with the resting-state functional MRI signal,” Proceedings of the National Academy of Sciences of the United States of America, vol. 104, pp. 18265-18269, 2007.
〔8〕 Q.-H. Zoua, C.-Z. Zhua, Y. Yang, X.-N. Zuoc, X.-Y. Longac, Q.-J. Caod, Y.-F. Wang, “An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: Fractional ALFF,” Journal of Neuroscience Methods, vol. 172, pp. 137-141, 15 July 2008.
〔9〕 Y. Zang, T. Jiang, Y. Lu, Y. He, L. Tian, “Regional homogeneity approach to fMRI data analysis,” NeuroImage, vol. 22, pp.394-400, May 2004.
〔10〕 M. Hallett, EM. Wassermann, LG. Cohen, J. Chmielowska, and C. Gerloff, “Cortical mechanisms of recovery of function after stroke,” Neurorehabilitation, vol. 10, pp. 131–142, 1998.
〔11〕 YH. Ahn, SH. Ahn, H. Kim, JH. Hong, and SH. Jang, “Can stroke patients walk after complete lateral corticospinal tract injury of affected hemisphere? ,” Neuroreport, vol. 17, pp. 987–990, 2006.
〔12〕 FN. Shelton, and MJ. Reding, “Effect of lesion location on upper limb motor recovery after stroke,” Stroke, vol. 32, pp. 107–112, 2001.
〔13〕 朱芷君, 6觀念,中風復健不再難, 康健雜誌 第187期, 2014, https://www.commonhealth.com.tw/article/article.action?nid=68459
〔14〕 魏大森, 腦中風患者的復健治療, 2010,
https://www1.cch.org.tw/knowledge/knowledge_1_1_detail.aspx?oid=785&no=1&pID=57&sNO=145
〔15〕 M. Kendall, J. D. R. Gibbons, Rank Correlation Methods (Charles Griffin Book Series), 5th edition, Correlation Methods Oxford: Oxford University Press, New York, 1990.
〔16〕 Y. Zang, T. Jiang, Y. Lu, Y. He, and L. Tian, “Regional homogeneity approach to fMRI data analysis,” Neuroimage, vol. 22, pp. 394–400, 2004 May 22.
〔17〕 B. Biswal, FZ. Yetkin, VM. Haughton, and JS. Hyde, “Functional connectivity in the motor cortex of resting human brain using echo-planar MRI,” Magnetic Resonance Medicine, vol. 34, no. 4, pp. 537-41, 1995 October.
〔18〕 YF. Zang, Y. He, CZ. Zhu, QJ. Cao, MQ. Sui, M. Liang, LX. Tian, TZ. Jiang, and YF. Wang, “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain and Development, vol. 29, no. 2, pp. 83-91, 2007 March.
〔19〕 QH. Zou, CZ. Zhu, Y. Yang, XN. Zuo, XY. Long, QJ. Cao, YF. Wang, and YF. Zang,“An improved approach to detection of amplitude of low-frequency fluctuation (ALFF) for resting-state fMRI: fractional ALFF,” Journal of Neuroscience Methods, vol. 172, no. 1, pp. 137-141, 2008 Jul 15.
〔20〕 X. N. Zuo, A. Di Martino, C. Kelly, Z. E. Shehzad, D. G. Gee, D. F. Klein, F. X. Castellanos, et al, “The oscillating brain: complex and reliable,” Neuroimage, vol. 49, no. 2, pp. 1432–1445, 2010.
〔21〕 H. Yang, X.Y. Long, Y.H. Yang, H. Yan, C.Z. Zhu, X.P. Zhou, et al., “Amplitude of low frequency fluctuation within visual areas revealed by resting-state functional MRI,” NeuroImage, vol. 36, pp. 144-152, 2007.
〔22〕 Y.F. Zang, Y. He, C.Z. Zhu, Q.J. Cao, M.Q. Sui, M. Liang, et al. , “Altered baseline brain activity in children with ADHD revealed by resting-state functional MRI,” Brain and Development, vol. 29, pp. 83-91, 2007.
〔23〕 J. Sanford, J. Moreland, L. R. Swanson, P. W. Stratford, and C. Gowland, “Reliability of the Fugl-Meyer Assessment for Testing Motor Performance in Patients Following Stroke,” Physical Therapy, vol. 73, no. 7, July 1993.
〔24〕 H. V. D. L. Johanna, H. Beckerman, J. Gustaaf Lankhorst, and M. Lex Bouter, “The responsiveness of the Action Research Arm test and the Fugl-Meyer Assessment scale in chronic stroke patients,” Journal of Rehabilitation Medicine, vol. 33, no. 3, pp. 110–3, March 2001.
〔25〕 J. T. L. Wilson, A. Hareendran, M. Grant, T. Baird, U. G. R. Schulz, K. W. Muir, et al., “Improving the Assessment of Outcomes in Stroke: Use of a Structured Interview to Assign Grades on the Modified Rankin Scale,” Stroke, vol. 33, no. 9, pp. 2243–2246, 2002.
〔26〕 J. L. Saver, B. Filip, S. Hamilton, A. Yanes, S. Craig, M. Cho, et al., “Improving the reliability of stroke disability grading in clinical trials and clinical practice: the Rankin Focused Assessment (RFA),” Stroke, vol. 41, no. 5, pp. 992–95, 2010.
〔27〕 TJ. Quinn, J. Dawson, and M. Walters, “Dr John Rankin; his life, legacy, and the 50th anniversary of the Rankin Stroke Scale,” Scott Medical Journal, vol. 53, no. 1, pp. 44–7, 2008.
〔28〕 J. Rankin, “Cerebral vascular accidents in patients over the age of 60. II. Prognosis,” Scott Medical Journal, vol. 2, no. 5, pp. 200–15, May 1957.
〔29〕 J. T. L. Wilson, A. Hareendran, A. Hendry, J. Potter, I. Bone, and K. W. Muir, “Reliability of the Modified Rankin Scale Across Multiple Raters: Benefits of a Structured Interview,” Stroke, vol. 36, no. 4, pp. 777–781, 2005.
〔30〕 C.-G. Yan, and Y.-F. Zang, “DPARSF: A MATLAB Toolbox for “Pipeline” Data Analysis of Resting-State fMRI,” Frontiers Systems Neuroscience, vol. 4, p. 00013, 14 May 2010.
〔31〕 X.-W. Song, Z.-Y. Dong, X.-Y. Long, S.-F. Li, X.-N. Zuo, C.-Z. Zhu, Y. He, C.-G. Yan, and Y.-F. Zang, “REST: A Toolkit for Resting-State Functional Magnetic Resonance Imaging Data Processing,” Public Library of Science, vol. 6, no. 9, p. 0025031, 20 September 2011.
〔32〕 M. Xia, J. Wang, and Y. He, “BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics,” Public Library of Science, vol. 8, no. 7, p. 068910, 4 July 2013.
〔33〕 M. C. Corballis, “Left Brain, Right Brain: Facts and Fantasies,” Public Library of Science, vol. 12, no. 1, p. 1001767, 2014.
〔34〕 P. Broca, “Sur la siège de la faculté du langage articulé. Bull Mem Soc Anthropol,” Paris, vol. 6, pp. 377–393, 1865.
〔35〕 S. A. Chance, T. J. Crow, “Distinctively human: cerebral lateralisation and language in Homo sapiens,” Journal of anthropological sciences, vol. 85, pp. 83–100, 2007.
〔36〕 R. W. Sperry, “Some effects of disconnecting the cerebral hemispheres,” Science, vol. 217, pp. 1223–1227, 1982.
〔37〕 M. S. Gazzaniga, J. E. Bogen, R. W. Sperry, “Observations of visual perception after disconnection of the cerebral hemispheres in man,” Brain, vol. 88, pp. 221–230, 1965.
〔38〕 H. Liu, S. M. Stufflebeam, J. Sepulcrea, T. Heddena, R. L. Buckner, “Evidence from intrinsic activity that asymmetry of the human brain is controlled by multiple factors,” Proceedings of the National Academy of Sciences of the United States of America, vol. 106, pp. 20499–20503, 2009.
〔39〕 T. Liu, J. Li, S. Huang, C. Li, Z. Zhao, G. Wen, and F. Chen, “Altered resting-state functional activity in isolated pontine infarction patients with pathological laughing and crying,” Oncotarget, vol. 8, no. 48, pp. 84529-84539, 13 October 2017.
〔40〕 J. Zhu, Y. Jin, K. Wang, Y. Zhou, Y. Feng, M. Yu, and X. Jin, “Frequency-Dependent Changes in the Regional Amplitude and Synchronization of Resting-State Functional MRI in Stroke,” Public Library of Science, vol.10, no. 4, p. 0123850, 2015.
〔41〕 J. Chen, D. Sun, Y. Shi, W. Jin, Y. Wang, Q. Xi and C. Ren, “Dynamic Alterations in Spontaneous Neural Activity in Multiple Brain Networks in Subacute Stroke Patients: A Resting-State fMRI Study,” Frontiers in Neuroscience, vol.7, p. 00994, 7 January 2019.
〔42〕 C.-Y. Peng, Y.-C. Chen, Y. Cui, D.-L. Zhao, Y. Jiao, T.-Y. Tang, S. Ju, and G.-J. Teng, “Regional Coherence Alterations Revealed by Resting-State fMRI in Post-Stroke Patients with Cognitive Dysfunction,” Public Library of Science, vol. 11, no. 7, p.0159574, 25 July 2016.
〔43〕 C. Jiang, L. Yi, S. Cai, and L. Zhang, “Ischemic Stroke in Pontine and Corona Radiata: Location Specific Impairment of Neural Network Investigated With Resting State fMRI,” Frontiers in Neuroscience, vol. 10, p. 00575, 31 May 2019.
〔44〕 Y.-H. Tsai, R. Yuan, Y.-C. Huang, M.-Y. Yeh, C.-P. Lin, and B. Biswal, “Disruption of brain connectivity in acute stroke patients with early impairment in consciousness,” Frontiers in Psychology , vol. 4, p. 00956, 2 Janurary 2014.
〔45〕 L. Chen, C. Li, J. Zhai, A. Wang, Q. Song, Y. Liu, et al., “Altered resting-state signals in patients with acute stroke in or under the thalamus,” Neuroscience Bulletin, vol. 32, pp. 585–90, 2016.
〔46〕 Y.-S. Shim, J.-S. Kim, Y.-M. Shon, Y.-A. Chung, K.-J. Ahn, and D.-W. Yang, “A serial study of regional cerebral blood flow deficits in patients with left anterior thalamic infarction: anatomical and neuropsychological correlates,” Journal of the Neurological Sciences, vol. 266, pp. 84–91, 2008.
〔47〕 R. L. Buckner, F. M. Krienen, A. Castellanos, J. C. Diaz, and B. T. Yeo, “The organization of the human cerebellum estimated by intrinsic functional connectivity,” Journal of Neuroscience, vol. 106, no. 5, pp. 2322-45, 27 July 2011.
〔48〕 J. D. Schmahmann, and D. N. Pandya, “Anatomic organization of the basilar pontine projections from prefrontal cortices in rhesus monkey,” Journal of Neuroscience, vol. 17, pp. 438–458, 1997.
〔49〕 Z. Zhao, C. Tang, D. Yin, J. Wu, J. Gong, L. Sun, J. Jia, D. Xu, M. Fan, “Frequency‐specific alterations of regional homogeneity in subcortical stroke patients with different outcomes in hand function,” Human brain mapping, vol. 39, no. 11, pp. 4373-4384, November 2018.
〔50〕 P. Wu, F. Zeng, Y. Li, J. Li, L. Qin, W. Qin, L. Luo, C. Yin, Y. Xiong, Y. Bai, D. Wang, Y. Zhou, and F. Liang, “Effect of acupuncture plus conventional treatment on brain activity in ischemic stroke patients: a regional homogeneity analysis,” Journal of Traditional Chinese Medicine, vol. 37, no. 5, pp. 650-658, 15 October 2017.
〔51〕 P. Goodin, G. Lamp, R. Vidyasagar, A. Connelly, S. Rose, B. C. V. Campbell, T. Tse , H. Ma, D. Howells, G. J. Hankey, S. Davis, G. Donnan et al., “Correlated Resting-State Functional MRI Activity of Frontostriatal, Thalamic, Temporal, and Cerebellar Brain Regions Differentiates Stroke Survivors with High Compared to Low Depressive Symptom Scores,” Neural Plasticity, vol. 2019, p. 2357107, 28 July 2019.
〔52〕 N. Egorova, M. Veldsman, T. Cumming, and A. Brodtmann, “Fractional amplitude of low-frequency fluctuations (fALFF) in post-stroke depression,” NeuroImage:Clinical, vol. 16, pp. 116-124, 2017.
〔53〕 C. Weiller, F. Chollet, K. J. Friston, R. J.S. Wise, and R. S. J. Frackowiak, “Functional reorganization of the brain in recovery from striatocapsular infarction in man”, Annals of Neurology, vol. 31, pp.463-472, 1992.
〔54〕 S. T. Carmichael, “Cellular and molecular mechanisms of neural repair after stroke: making waves,” Annals of Neurology, vol. 59, no. 5, pp. 735-42, 21 April 2006.
〔55〕 N. Dancause, S. Barbay, S. B. Frost, E. J. Plautz, D. Chen, E. V. Zoubina, A. M. Stowe, and R. J. Nudo, “Extensive cortical rewiring after brain injury,” Journal of Neuroscience, vol. 25, no. 44, pp. 10167-79, 2 November 2005.
〔56〕 R. Traversa, P. Cicinelli, A. Bassi, P. M. Rossini, and G. Bernardi, “Mapping of Motor Cortical Reorganization After Stroke: A Brain Stimulation Study With Focal Magnetic Pulses,” Stroke, vol. 28, pp. 110-117, January 1997.
〔57〕 D. M. Feeney, “Phannacological modulation of recovery after brain injury: A reconsideration of diaschisis,” Neurologic Rehabilitation, vol. 5, pp. 113-128, 1 March 1991.
〔58〕 S. W. Gabrieli, and J. M. Ford, “Default mode network activity and connectivity in psychopathology,” Annual Review of Clinical Psychology, vol. 8, pp. 49–76, April 2012.
〔59〕 S. L. Lagadec, I. Sibon, B. Dilharreguy, P. Renou, O. Fleury, M. Allard, “Subacute default mode network dysfunction in the prediction of post-stroke depression severity,” Radiology, vol. 264, pp. 218–24, 1 July 2012.
〔60〕 W. Liao, H. Chen, Y. Feng, D. Mantini, C. Gentili, Z. Pan, J. Ding, X. Duan, C. Qiu, S. Lui, Q. Gong, and W. Zhang, “Selective aberrant functional connectivity of resting state networks in social anxiety disorder,” Neuroimage, vol. 52, pp. 1549–58, January 2010.
〔61〕 M. D. Greicius, G. Srivastava, A. L. Reiss, and V. Menon, “Default-mode network activity distinguishes Alzheimer’s disease from healthy aging: evidence from functional MRI,” Proceedings of the National Academy Sciences of the United States America, vol. 101, pp. 4637–42, 4 February 2004.
〔62〕 J. M. Foss, A. V. Apkarian, and D. R. Chialvo, “Dynamics of pain: fractal dimension of temporal variability of spontaneous pain differentiates between pain states,”  Journal of Neurophysiology, vol. 95, no. 2, pp. 730-6, March 2006.

〔62〕 M. N. Baliki, P. Y. Geha, A. V. Apkarian, and D. R. Chialvo, “Beyond feeling: chronic pain hurts the brain, disrupting the default-mode network dynamics,” Journal of Neuroscience, vol. 28, no. 6, pp. 1398–403, February 2008.
〔64〕 R. J. Nudo, and R. B. Masterton, “Descending Pathways to the Spinal Cord, III: Sites of Origin of the Corticospinal Tract,” Journal of Comparative Neurology, 22 June 1990.
〔65〕 K. Shima, and J. Tanji, “Both supplementary and presupplementary motor areas are crucial for the temporal organization of multiple movements,” Journal of Neurophysiology , 1998.
〔66〕 R. Cunnington, C. Windischberger, L. Deecke, and E. Moser, “The preparation and readiness for voluntary movement: a high-field event-related fMRI study of the Bereitschafts-BOLD response,” Neuroimage, vol. 20, pp. 404-412, 2003.
〔67〕 S. Zhang, J. S. Ide, and C. S. Li, “Resting-state functional connectivity of the medial superior frontal cortex,” Cerebral Cortex, vol. 22, pp. 99–111, 2012.
〔68〕 J. S. Damoiseaux, S. A. R. B. Rombouts, F. Barkhof, P. Scheltens, C. J. Stam, S. M. Smith, and C. F. Beckmann, “Consistent resting-state networks across healthy subjects,” Proceedings of the National Academy Sciences of the United States America, vol. 103, no. 37, pp. 13848-13853, 12 September 2006.
〔69〕 S. M. Kim, S. Y. Park, Y. I. Kim, Y. D. Son, U.-S. Chung, K. J. Min, and D. H. Han, “Affective network and default mode network in depressive adolescents with disruptive behaviors,” Neuropsychiatric Disease and Treatment, vol. 12, pp. 49-56, 31 December 2015.
〔70〕 S. Markett, O. A. Wudarczyk, B. B. Biswal, P. Jawinski, and C. Montag, “Affective Network Neuroscience,” Frontiers in Neuroscience, vol. 12, p. 00895, 11 December 2018.
指導教授 蔡章仁(Jang-Zern Tsai) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明