博碩士論文 107022002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:54 、訪客IP:3.145.86.225
姓名 沈易(Yi Shen)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 透過衛星資料探討地表特性與雲特徵之間的關聯性
(Investigate the Linkage between Land Surface Properties and Cloud Characteristics from Satellite Data)
相關論文
★ 地球同步衛星觀測資料之雲區像素辨識★ 結合掩星折射率與高光譜紅外線觀測之大氣溫溼度垂直剖面反演
★ 結合衛星反演資料與WRF模式探討梅雨鋒面水氣傳送關聯性之個案研究★ Optimal Use of Satellite Sounding Products for Numerical Weather Prediction
★ The spatial correlation of satellite-estimated PM2.5 and epidemiological diseases in Taiwan★ Assessment of the NWP Model Physical Fields from Radiative Quantity
★ 海表面風場與通量於熱帶氣旋發展影響之探討★ 使用衛星資料評析全球預報模式之 雲參數特性
★ 衛星輻射強度與反演產品之資料同化研究--尼伯特颱風(2016)個案分析★ 日本氣象同步衛星 Himawari-8 向日葵八號 之雲微物理參數反演驗證與評估
★ 掩星資料於颱風快速增強機制之模擬研究-梅姬颱風(2010)★ 利用多頻道衛星觀測評估WRF數值模式於不同微物理方案之雲特性:以梅雨鋒面降水系統個案為例
★ 應用多時期向日葵8號衛星影像進行雲像素的偵測與追蹤★ 使用CloudSat及ECMWF再分析資料探討南海及海洋大陸地區深對流之環境因子
★ 使用 CloudSat 分析南海與海洋大陸地區之深對 流與動力環境特徵★ 印尼地區地表性質與雲特徵之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2030-12-31以後開放)
摘要(中) 水文循環已表明地面特性與雲特徵之間具有一定的關連性,地表植被的變化可能與蒸散速率有關,藉此改變了降水模式和地表溫度,而降水型態也與雲的特徵有關。然而過往的研究中,較少地表特性影響雲微物理特徵的調查。因此,本研究主要探討雲微物理特徵如何受到地表植被的變化影響,特別針對森林砍伐及其恢復過程之情境。本研究選擇世界第三大島—婆羅洲,乃因該島近幾十年來森林砍伐率相當高,透過使用中級解析度成像分光輻射度計(MODIS)於2003 年至2018 年觀測的結果進行研究分析,利用常態化差異植被指數(NDVI)判別地表特性,並且進一步選擇雲量(CF)、雲頂氣壓(CTP)、雲光學厚度(COT)與雲滴有效粒徑(RE)等參數,探討地表與雲微物理間的關係。經由常態化差異植被指數的變化分析與前人研究進行比較,大致可將地表特性歸納為兩個時期: 棕櫚樹主導時期與混和林主導時期,並且進行氣候異常值年度、季度的差異與變化的分析。本研究結果發現,相較於混和林主導時期來說,棕櫚樹時期的雲特徵傾向於具有較大的雲滴粒徑、較厚的雲光學厚度、雲量較少且雲出現高度較低。在大多數情況下,棕櫚樹主導時期無論是乾季或是濕季,其氣候異常頻率都比混和林主導期更高,與季節變化相比,雲光學厚度和雲滴有效粒徑的氣候異常值對地表特徵的敏感性更高。整體結果表示若原始森林被大量砍伐或是改種植單一樹種(如同棕櫚樹的種植模式),則可能加劇局地氣候中雲型態的異常情形。
摘要(英) The hydrological cycle has been proved that with the relationship between either land surface properties or cloud characteristics. The changes in surface vegetation might associate with the evapotranspiration rate, then further modify the precipitation pattern and surface temperature. On the other hand, precipitation type also has a relationship with clouds. However, there are not many studies on the response of cloud microphysical characteristics with land surface properties. Therefore, this study is focused on the investigation of the changes in surface vegetation that associates with cloud microphysical characteristics, in particular under the scenarios of deforesting and its recovery. The study area is the world′s third-largest island, Borneo, which has a large deforestation rate in recent decades. The satellite data is used Moderate-Resolution Imaging Spectroradiometer (MODIS) which adopted for study analysis from 2003 to 2018. The Normalized Difference Vegetation Index (NDVI) was applied to identify the land surface characteristics, while cloud fraction (CF), cloud top pressure (CTP), cloud optical thickness (COT), and cloud effective radius (RE) is adopted as the cloud microphysical features. Comparing the changes in NDVI with the previous studies that we can roughly divide data into two periods, one is the palm trees dominated and the other one is a mixed forest dominated. Trying to analyze the annual and seasonal climatology anomaly differences and changes in two types of land surface dominated. The results show that the characteristics of clouds tend to have larger cloud droplet sizes and optically thicker, less cloudy, and lower-level clouds during the palm tree dominated period than the mixed tree dominated. In most of the conditions, either dry or wet season, the palm tree dominant has a higher anomaly frequency than mixed tree dominant. The anomaly of COT and RE have a higher sensitivity to land properties than seasonal change. The overall results show that the deforestation of natural primary forests or planting single species of the palm may cause larger variability from the climatological cloud pattern over the study area.
關鍵字(中) ★ 中級解析度成像分光輻射度計
★ 常態化差異植被指數
★ 雲參數
★ 氣候異常值
關鍵字(英) ★ MODIS
★ Cloud Properties
★ NDVI
★ Anomaly
論文目次 摘 要 i
Abstract ii
誌 謝 iii
Table of Contents iv
List of Figures vi
List of Tables ix
Chapter 1: Introduction 1
1.1 The Role of the Forest in Climate and Ecosystems 1
1.2 Land Surface Properties and its Changes 3
1.3 Evapotranspiration and Deforestation 5
1.3.1 Forest and Land Surface Temperature 7
1.3.2 Forest and Rainfall 7
1.4 Objectives 9
Chapter 2: Study Area 10
2.1 Location 10
2.2 Environment 12
2.3 Climate 14
2.4 Background of Deforestation 17
Chapter 3: Data 18
3.1 Remote Sensing Imagery 18
3.1.1 MODIS Surface Vegetation Science Product 20
3.1.2. MODIS Cloud Science Product 22
3.2 Algorithm Theoretical Basis of MODIS 24
3.3 Precipitation Dataset 26
3.4 Temporal Period 27
Chapter 4: Methodology 28
4.1 Data Pre-processing 28
4.1.1. Collect the Dataset 28
4.1.2. Extract Parameters 30
4.1.3. Masking 34
4.2 Definition 36
4.2.1 Annual and Seasonal 36
4.2.2 Land Surface Dominate 37
4.3 Statistical Analysis 41
4.3.1. Anomaly Analysis of Annual and Seasonal 41
4.3.2. Flowchart 42
Chapter 5: Result 44
5.1 Annual Tendency 44
5.2 Annual Anomaly Comparison 47
5.3 Seasonal Anomaly Comparison 55
5.3.1 Palm Tree Dominate 55
5.3.2 Mixed Tree Dominate 60
5.4 Sensitivity Anomaly Analysis 66
Chapter 6: Conclusion and Future Work 75
6.1 Discussion and Conclusion 75
6.2 Future work 77
Reference 78
參考文獻 Allen, C. D., D. D. Breshears, and N. G. McDowell., 2015. On underestimation of global vulnerability to tree mortality and forest die-off from hotter drought in the Anthropocene, Ecosphere, 6(8), pp.1–55.
Ban-Weiss G A, Bala G, Cao L, Pongratz J and Caldeira K., 2011. Climate forcing and response to idealized changes in surface latent and sensible heat. Environ. Res. Lett., 6.
Barker, J.L., Harnden, J.M., Montgomery, H., Anuta, P.E., Kvaran, G., Knight, E., Bryant, T., Mckay, A., Smid, J., & Knowles, D., 1994. MODIS. Volume 2: MODIS level 1 geolocation, characterization and calibration algorithm theoretical basis document, version 1.
Bathiany, S., M. Claussen, V. Brovkin, T. Raddatz, and V. Gayler., 2010. Combined biogeophysical and biogeochemical effects of large-scale forest cover changes in the MPI Earth system model, Biogeosciences, 7(5), pp.1383–1399.
Betts, R., 2001. Biogeophysical impacts of land use on present-day climate: near-surface temperature change and radiative forcing. Atmospheric Science Letters, 2(1-4), pp.39-51.
Bounoua, L., R. DeFries, G. J. Collatz, P. Sellers, and H. Khan., 2002. Effects of land cover conversion on surface climate, Clim. Change, 52(1-2), pp.29–64.
Bonan, G., 2008. Forests and Climate Change: Forcings, Feedbacks, and the Climate Benefits of Forests. Science, 320(5882), pp.1444-1449.
Costa, M. H., and Foley, J. A., 1999. Trends in the hydrological cycle of the Amazon basin. J Geophys Res–Atmos, 104(14), pp.189–98.
Curran L M, Trigg S N,Mcdonald A K, Astiani D, Hardiono YM, Siregar P, Caniago I and Kasischke E., 2004. Lowland forest loss in protected areas of Indonesian Borneo. Science, 303(1000).
Didan, K., 2015. MOD13Q1 MODIS/Terra Vegetation Indices 16-Day L3 Global 250m SIN Grid V006 [Data set], NASA EOSDIS LP DAAC.
Eltahir, E. A. B., and Bras, R. L., 1994. Precipitation recycling in the Amazon basin. Q J Roy Meteor Soc., 120, pp.861–80.
Eltahir, E. A. B., and Bras, R. L., 1996. Precipitation recycling, Rev. Geophys., 34(3), pp.367–378.
Ellison, David, et al., 2017. Trees, forests and water: Cool insights for a hot world. Global Environmental Change., 43, pp.51-61.
Erasmi, Stefan & Bothe, Mirko & Petta, Reinaldo., 2012. Enhanced filtering of modis time series data for the analysis of desertification processes in northeast brazil.
Firdaus R., Wibowo P.M., Rochmayanto Y., 2017. Developing Strategies for Landscape Sustainability: An Indonesian National Strategic Plan of Action in the Heart of Borneo. In: Hong SK., Nakagoshi N. (eds) Landscape Ecology for Sustainable Society. Springer, Cham.
Foley, J., Costa, M., Delire, C., Ramankutty, N. and Snyder, P., 2003. Green surprise? How terrestrial ecosystems could affect earth’s climate. Frontiers in Ecology and the Environment, 1(1), pp.38-44.
Galdikas, D., 2020. Climate, Forest Ecology And Orangutans – Official Orangutan Foundation International Site. [online] Official Orangutan Foundation International Site. Available at: <https://orangutan.org/climate-of-borneo/>
Gaveau, D., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N., Ancrenaz, M., Nasi, R., Quinones, M., Wielaard, N. and Meijaard, E., 2014a Major atmospheric emissions from peat fires in Southeast Asia during non-drought years: evidence from the 2013 Sumatran fires Sci. Rep. 4 6112.
Gaveau, D., Sloan, S., Molidena, E., Yaen, H., Sheil, D., Abram, N., Ancrenaz, M., Nasi, R., Quinones, M., Wielaard, N. and Meijaard, E., 2014b. Four Decades of Forest Persistence, Clearance and Logging on Borneo. PLoS ONE, 9(7), p.e101654.
Gaveau, D., Sheil, D., Husnayaen et al., 2016. Rapid conversions and avoided deforestation: examining four decades of industrial plantation expansion in Borneo. Sci Rep, 6, 32017.
Gaveau, D., Locatelli, B., Salim, M., Yaen, H., Pacheco, P. and Sheil, D., 2018. Rise and fall of forest loss and industrial plantations in Borneo (2000-2017). Conservation Letters, 12(3), p.e12622.
Gordon LJ, Steffen W, Jonsson BF, Folke C, Falkenmark M, Johannessen A., 2005. Human modification of global water vapor flows from the land surface. Proceedings of the National Academy of Sciences, 102, pp.7612–7617.
Hassan, R. Scholes, R. Ash, N., 2005. Ecosystems and Human Well-being: Current State and Trends, Volume 1.
Hansen, M., P. Potapov, and R. Moore., 2013. High-resolution global maps of 21st-century forest cover change, Science, 850(6160), pp.850–853.
Hansen., J.E. and L.D. Travis., 1974. Light scattering in planetary atmospheres. Space Science Reviews. 16 (4), pp.527–610.
Hansen MC et al., 2013. High-resolution global maps of 21st-century forest cover change. Science, 342.
Heute, A., C. Justice and W.V. Leeuwen, 1999. MODIS Vegetation Index (MOD 13) Algorithm Theoretical Basis Document (ATBD).
Hubanks, P.A., M.D. King, S.A. Platnick and R.A. Pincus, 2008a: MODIS Atmosphere L3 Gridded Product Algorithm Theoretical Basis Document, https://modis.gsfc.nasa.gov/data/atbd/atbd_mod30.pdf
Hubanks, P.A, 2018b: MOD08 V6 Atmosphere Monthly Global Product Bands, (https://developers.google.com/earth-engine/MOD08_bands).
Huete, A., Didan, K., Miura, T., Rodriguez, E., Gao, X. and Ferreira, L., 2002. Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2), pp.195-213.
Huete, Alfredo & Didan, K. & Van Leeuwen, Willem & Miura, Tomoaki & Glenn, Ed., 2011. MODIS vegetation indices. 10.1007/978-1-4419-6749-7_26.
Jackson, R. B., et al., 2008. Protecting climate with forests, Environ. Res. Lett., 3(4).
King, M.D., 1997; Cloud Retrieval Algorithms for MODIS: Optical Thickness, Effective Particle Radius, and Thermodynamic Phase.
Kim, D., J. O. Sexton, and J. R. Townshend., 2015. Accelerated deforestation in the humid tropics from the 1990s to the 2000s, Geophys. Res.Lett., 42, pp.3495–3501.
Langner A, Miettinen J and Siegert F., 2007. Land cover change 2002−2005 in Borneo and the role of fire derived from MODIS imagery. Glob. Change Bio., 13.
Laurance WF., 2005. Forest-climate interaction in fragmented tropical landscapes. Pages 31–38 in Malhi Y, Phillips O, eds. Tropical Forests and Global Atmospheric Change. Oxford (United Kingdom): Oxford University Press.
Li, W., P. Ciais, N. MacBean, S. Peng, P. Defourny, and S. Bontemps., 2016. Major forest changes and land cover transitions based on plant functional types derived from the ESA CCI land cover product, Int. J. Appl. Earth Obs. Geoinf., 47, pp.30–39.
Li, Y., Zhao, M., Mildrexler, D., Motesharrei, S., Mu, Q., Kalnay, E., Zhao, F., Li, S. and Wang, K., 2016. Potential and Actual impacts of deforestation and afforestation on land surface temperature. Journal of Geophysical Research: Atmospheres, 121(24), pp.14,372-14,386.
Lindsey, R., 2009. Climate and Earth’s Energy Budget. NASA earth observatory.
Liu, C.-Y., C.-H. Chou, P.-H. Lin, and M. Min (2020a), Comparison of Cloud-Top Property Retrievals from Himawari-8, MODIS, CloudSat, CALIPSO, and radiosonde, Journal of Geophysical Research: Atmospheres, doi: 10.1029/2020JD032683
Liu, C.-Y., P. Aryastana, G.-R. Liu, and W.-R. Huang (2020b), Assessment of Satellite Precipitation Product Estimates over Bali Island, Atmospheric Research, 244, https://doi.org/10.1016/j.atmosres.2020.105032
MacDicken, K. et al., 2016. Global Forest Resources Assessment 2015. Food and Agriculture Organization of the United Nations.
Mahrt, L. & Ek, M., 1993. Spatial variability of turbulent fluxes and roughness lengths in HAPEX-MOBILHY. Bound. Lay. Meteorol. 65, pp.381–400.
Margono, B., Potapov, P., Turubanova, S., Stolle, F. and Hansen, M., 2014. Primary forest cover loss in Indonesia over 2000–2012. Nature Climate Change, 4(8), pp.730-735.
McAlpine, C., Johnson, A., Salazar, A., Syktus, J., Wilson, K., Meijaard, E., Seabrook, L., Dargusch, P., Nordin, H. and Sheil, D., 2018. Forest loss and Borneo’s climate. Environmental Research Letters, 13(4), p.044009.
Montenegro, A., M. Eby, Q. Z. Mu, M. Mulligan, A. J. Weaver, E. C. Wiebe, and M. S. Zhao., 2009. The net carbon drawdown of small scale afforestation from satellite observations, Global Planet. Change, 69(4), pp.195–204.
Oliveira, Julio & Epiphanio, Jose., 2012. Noise reduction in modis ndvi time series data based on spatial-temporal analysis. 2372-2375.
Ramage, C.S., 1968. Role of a tropical “maritime continent” in the atmospheric circulation. Mon. Weather Rev. 96, pp.365–369.
Rudel, T. K., 2012. The human ecology of regrowth in the tropics, J. Sustain. For., 31(4-5), pp.340–354.
Runting, R., Meijaard, E., Abram, N. et al., 2015. Alternative futures for Borneo show the value of integrating economic and conservation targets across borders. Nat Commun 6, 6819.
Runyan, C., and P. D’Odorico., 2016. Global Deforestation, Cambridge Univ. Press, New York.
Sagan, C., Toon, O., and Pollack, J., 1979. Anthropogenic Albedo Changes and the Earth’s Climate. Science, 206(4425), pp.1363-1368.
Salati E, Dall’Olio A, Matsui E, and Gat JR., 1979. Recycling of water in the Amazon basin: an isotopic study. Water Resour Res, 15, pp.1250–58.
Santika, T., Ancrenaz, M., Wilson, K.A. et al., 2017. First integrative trend analysis for a great ape species in Borneo. Sci Rep 7, 4839.
Sheil, D. and Murdiyarso, D., 2009. How Forests Attract Rain: An Examination of a New Hypothesis. BioScience, 59(4), pp.341-347.
Shoumatoff, A., 2017. The Wasting Of Borneo: Dispatches From A Vanishing World.. 1st ed. Beacon Pr.
Stubenrauch, C. J.; Rossow, W. B.; Kinne, S.; Ackerman, S.; Cesana, G.; Chepfer, H; Di Girolamo, L.; Getzewich, B.; Guignard, A.; Heidinger, A.; Maddux, B. C.; Menzel, W.P; Minnis, P.; Pearl, C.; Platnick, S.; Poulsen, C.; Reidi, J.; Sun-Mack, S; Walther, A.; Winker, D.; Zeng, S.; Zhao, G., 2013. Assessment of global cloud datasets from satellites: Project and Database initiated by GEWEX Radiation Panel. Bulletin of the American Meteorological Society. 94 (7), pp.1031–1049.
Shukla, J. and Mintz, Y., 1982. Influence of Land-Surface Evapotranspiration on the Earth′s Climate. Science, 215(4539), pp.1498-1501.
Spracklen, D., Arnold, S. and Taylor, C., 2012. Observations of increased tropical rainfall preceded by air passage over forests. Nature, 489(7415), pp.282-285.
Spracklen, D. and Garcia-Carreras, L., 2015. The impact of Amazonian deforestation on Amazon basin rainfall. Geophysical Research Letters, 42(21), pp.9546-9552.
Teuling, A. J. et al., 2010. Contrasting response of European forest and grassland energy exchange to heatwaves. Nat. Geosci. 3, pp.722–727.
Teuling, A., Taylor, C., Meirink, J., Melsen, L., Miralles, D., van Heerwaarden, C., Vautard, R., Stegehuis, A., Nabuurs, G. and de Arellano, J., 2017. Observational evidence for cloud cover enhancement over western European forests. Nature Communications, 8(1).
Wielicki, B., Harrison, E., Cess, R., King, M. and Randall, D., 1995. Mission to Planet Earth: Role of Clouds and Radiation in Climate. Bulletin of the American Meteorological Society, 76(11), pp.2125-2153.
Xiong, X., M.D. King, V.V. Salomonson, W.L. Barnes, B.N. Wenny, A. Angal, A. Wu, S. Madhavan and D.O. Link, 2016. Moderate Resolution Imaging Spectroradiometer on Terra and Aqua Missions. In: Optical Payloads for Space Missions, [S.E. Qian (eds.)]. John Wiley & Sons, pp. 53-89.
Yamanaka, M., 2016. Physical climatology of Indonesian maritime continent: An outline to comprehend observational studies. Atmospheric Research, 178-179, pp.231-259.
Yoneyama, K. and Zhang, C., 2020. Years of the Maritime Continent. Geophysical Research Letters, 47(12).
Zhao, K., and R. Jackson., 2014. Biophysical forcings of land-use changes from potential forestry activities in North America, Ecol. Monogr., 84(2), pp.329–353.
指導教授 劉千義 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明