博碩士論文 107521126 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:3.140.185.147
姓名 李健民(Jian-Min Li)  查詢紙本館藏   畢業系所 電機工程學系
論文名稱 毫米波氮化鎵高電子遷移率電晶體之研製
(Fabrication of Millimeter Wave GaN-Based High Electron Mobility Transistors)
相關論文
★ 磷化銦異質接面雙極性電晶體元件製作與特性分析★ 氮化鎵藍紫光雷射二極體之製作與特性分析
★ 氮化銦鎵發光二極體之研製★ 氮化銦鎵藍紫光發光二極體的載子傳輸行為之研究
★ 次微米磷化銦/砷化銦鎵異質接面雙極性電晶體自我對準基極平台開發★ 以 I-Line 光學微影法製作次微米氮化鎵高電子遷移率電晶體之研究
★ 矽基氮化鎵高電子遷移率電晶體 通道層與緩衝層之成長與材料特性分析★ 磊晶成長氮化鎵高電子遷移率電晶體 結構 於矽基板過程晶圓翹曲之研析
★ 氮化鎵/氮化銦鎵多層量子井藍光二極體之研製及其光電特性之研究★ 砷化銦量子點異質結構與雷射
★ 氮化鋁鎵銦藍紫光雷射二極體研製與特性分析★ p型披覆層對量子井藍色發光二極體發光機制之影響
★ 磷化銦鎵/砷化鎵異質接面雙極性電晶體鈍化層穩定性與高頻特性之研究★ 氮化鋁中間層對氮化鋁鎵/氮化鎵異質接面場效電晶體之影響
★ 不同濃度矽摻雜之氮化鋁銦鎵位障層對紫外光發光二極體發光機制之影響★ 二元與四元位障層應用於氮化銦鎵綠光二極體之光性分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化鎵高電子遷移率電晶體由於其優異的高崩潰電場和高電子飽和速度等特性,在射頻功率放大器之應用具有極大潛力。為應用於毫米波頻段,氮化鎵高電子遷移率電晶體之閘極長度必須縮小至0.2微米或以下。通常此類元件是以電子束微影技術製作,本論文研究則以低生產成本的I-line光學微影技術來製作元件,透過蝕刻回填方式,突破光學微影的極限,達到閘極微縮的效果。
  本研究製作之次微米高電子遷移率電晶體,其閘極微縮是利用鈍化層開洞後進行回填的密合現象,再透過電漿非等向性的蝕刻,達到閘極微縮的效果,此製程形成之T型閘極頭部有鈍化層支撐,故可大幅提升製程良率。經過多次製程改良,依序調整曝光劑量與修改光罩尺寸,將曝光關鍵尺寸從0.7μm縮小至0.26μm,並利用氧化鋁的高蝕刻選擇比的材料特性,保持蝕刻垂直度,經過蝕刻回填製程後,最終閘極線寬逐漸從0.27μm微縮至93 nm,達到奈米級的尺寸。
  本論文以蝕刻回填的方式製作出閘極線寬為0.27μm的氮化鎵高電子遷移率電晶體,元件之直流轉導最大值(gm,max)為439mS/mm;高頻小訊號特性fT=44GHz,fmax=71GHz,其特性與國際使用電子束微影的研究團隊相比,在相同閘極線寬下,可以有相當的表現,顯示出以光學微影製作小線寬閘極在市場上的價值。
摘要(英) GaN-based high electron mobility transistors (HEMTs) offer great potential in applications such as millimeter-wave power amplifiers due to its excellent high breakdown electric field and high electron saturation velocity. In order to achieve the required device performance in the mm-wave frequency band, the gate length must be scaled down to 0.2 μm or less. Usually, such a small gate footprint is achieved by using electron beam lithography (EBL). In this work, we have demonstrated a cost-effective way to fabricate sub-200 nm T-gate by using I-line optical lithography through etching and backfilling method and further pushed the limit of optical lithography.  
The T-gate process consists of depositing a SixNy layer by PECVD followed by defining and opening a window by i-line stepper and ICP etching. The window is subsequently filled by the second layer of SixNy, leading a “U”-shaped surface morphology due to the conformal deposition. The gate footprint is then defined by anisotropic etching to the bottom region of the “U” shaped area followed by the deposition of Ni/Au metal stack. The exposure dose and mask modification are adjusted through several process modifications. The critical exposure size is reduced from 0.7 μm to 0.26 μm, and the high etching selectivity of aluminum oxide is used to maintain the verticality of the etching. The gate length is scaled down from 0.27 μm to 93 nm after etching the backfilled SixNy.
  Furthermore, the fabricated devices exhibit excellent DC and RF characteristics. The maximum DC transconductance (gm,max) of 439 mS/mm, small-signal current gain cut-off frequency (fT) of 44 GHz and power gain cutoff frequency (fmax) of 71 GHz are achieved on a device with 0.27 μm gate length. This excellent DC and RF performance is comparable to those of the devices fabricated by using EBL. Therefore, the use of low-cost low-resistivity silicon substrate (LR-Si) and electron beam lithography-free process may help to realize cost-effective RF-GaN HEMTs for next-generation mm-wave applications.
關鍵字(中) ★ 氮化鎵
★ 高電子遷移率電晶體
★ 毫米波
★ 光學微影
關鍵字(英) ★ GaN
★ HEMT
★ mm-wave
★ I-line
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章  導論 1
1.1 前言 1
1.2 氮化鎵異質結構材料特性 4
1.3 氮化鎵高頻元件發展 6
1.4 研究動機與論文架構 8
第二章  閘極微縮設計與HEMTs元件製作 9
2.1 閘極微縮製程 9
2.1.1 表面鈍化與微縮製程設計 9
2.1.2 蝕刻回填厚度計算 10
2.1.3閘極微縮歷程 13
2.2 歐姆接觸退火條件測試 15
2.3 HEMTs元件製作流程 18
第三章  氮化鎵高電子遷移率電晶體小訊號模型 23
3.1 量測系統介紹 23
3.1.1 量測校正(Calibration) 25
3.1.2 去嵌化(De-Embedding) 26
3.2 小訊號等效電路模型 27
3.2.1 元件外部寄生參數萃取 27
3.2.2 元件內部本質參數萃取 31
第四章  T型閘極HEMT特性量測分析 34
4.1 元件直流特性分析 35
4.1.1 歐姆接觸特性 35
4.1.2 轉移及輸出特性 35
4.1.3 崩潰特性 37
4.2 元件高頻特性分析 39
4.2.1 小訊號特性 39
4.2.2 大訊號特性 43
4.3 本章總結 49
第五章  總結與未來展望 50
參考文獻 [1] O. Ambacher, et al., “Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructures,” Journal of Applied Physics, vol. 85, no. 6, March 1999.
[2] Remziye Tülek, et al., “Comparison of the transport properties of high quality AlGaN/AlN/GaN and AlInN/ AlN/GaN two-dimensional electron gas heterostructures,” Journal of Applied Physics, vol. 105, no. 1, January 2009.
[3] M. Gonschorek, et al., “High electron mobility lattice-matched AlInN/GaN field-effect transistor heterostructures,” Applied Physics Letters, vol. 89, March 2006.
[4] L. Shen et al., "AlGaN/AlN/GaN high-power microwave HEMT," IEEE Electron Device Letters, vol. 22, no. 10, pp. 457-459, October 2001.
[5] N Ketteniss, et al., “Study on quaternary AlInGaN/GaN HFETs grown on sapphire substrates,” Semiconductor Science and Technology, vol. 25, no. 7, June 2010.
[6] R. Aubry, et al., "ICP-CVD SiN Passivation for High-Power RF InAlGaN/GaN/SiC HEMT," IEEE Electron Device Letters, vol. 37, no. 5, pp. 629-632, May 2016.
[7] WEN WANG, et al., "Improvement of Power Performance of GaN HEMT by Using Quaternary InAlGaN Barrier," IEEE Journal of the Electron Devices Society, vol. 6, pp. 360-364, December 2018.
[8] E. Dogmus, et al., “InAlGaN/GaN HEMTs at Cryogenic Temperatures,” Electronics, vol. 5, no. 4, pp. 31, Jun. 2016.
[9] DAI SHU JUN, “Epitaxial Growth and Device Fabrication of Si-based AlInGaN/AIN/GaN HEMT,” USTC, 2018.
[10] Narihiko Maeda, et al., “Systematic Study of Insulator Deposition Effect (Si3N4, SiO2, AlN, and Al2O3) on Electrical Properties in AlGaN/GaN Heterostructures,” Japanese Journal of Applied Physics, vol. 46, no. 2, February 2007.
[11] S. Arulkumaran, et al., “Surface passivation effects on AlGaN/GaN high-electron-mobility transistors with SiO2, Si3N4 , and silicon oxynitride,” Applied Physics Letters, vol. 84, no. 4, January 2004.
[12] M.C.A.M. Koolen, et al., “An improved de-embedding technique for on-wafer high-frequency characterization,” IEEE 1991 Bipolar Circuits and Technology Meeting, 1991.
[13] P. M. White, et al., "Improved equivalent circuit for determination of MESFET and HEMT parasitic capacitances from "Coldfet" measurements," IEEE Microwave and Guided Wave Letters, vol. 3, no. 12, pp. 453-454, December 1993
[14] Jing Lu, et al., “A new small-signal modeling and extraction method in AlGaN/GaN HEMTs,” Solid-State Electronics, vol. 52, no. 1, pp. 115-120, January 2008.
[15] M. Berroth, et al., "Broad-band determination of the FET small-signal equivalent circuit," IEEE Transactions on Microwave Theory and Techniques, vol. 38, no. 7, pp. 891-895, July 1990.
[16] M. T. Yang, et al., "Broadband small-signal model and parameter extraction for deep sub-micron MOSFETs valid up to 110 GHz," IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp. 369-372, June 2003.
[17] Dongping Xiao, et al., “Detailed analysis of parasitic loading effects on power performance of GaN-on-silicon HEMTs,” Solid-State Electronics, vol. 53, no. 2, pp. 185-189, February 2009.
[18] Syu-Jhih Wei, “The Fabrication of High-Power and High-Frequency AlGaN/GaN HEMTs and Development of Gate Length Reducing Process,” NTU, 2018.
[19] H.W.Then, et al., "High-performance low-leakage enhancement-mode high-K dielectric GaN MOSHEMTs for energy-efficient, compact voltage regulators and RF power amplifiers for low-power mobile SoCs," 2015 Symposium on VLSI Technology, pp. 202-203, June 2015.
[20] S. Arulkumaran, et al., "High-Frequency Microwave Noise Characteristics of InAlN/GaN High-Electron Mobility Transistors on Si (111) Substrate," IEEE Electron Device Letters, vol. 35, no. 10, pp. 992-994, October 2014.
[21] S. D. Nsele, et al., "Noise characteristics of AlInN/GaN HEMTs at microwave frequencies," 2013 22nd International Conference on Noise and Fluctuations, pp. 1-4, June 2013.
[22] Ronghua Wang, et al., "Gate-Recessed Enhancement-Mode InAlN/AlN/GaN HEMTs With 1.9-A/mm Drain Current Density and 800-mS/mm Transconductance," IEEE Electron Device Letters, vol. 31, no. 12, pp. 1383-1385, December 2010.
[23] F. Medjdoub, et al., "High frequency high breakdown voltage GaN transistors," 2015 IEEE International Electron Devices Meeting, pp. 217-220, December 2015.
[24] P.D. Christy, et al., “High fT and fMAX for 100 nm unpassivated rectangular gate AlGaN/GaN HEMT on high resistive silicon (111) substrate,” Electronic Letters, vol. 51, no. 17, pp. 1366 - 1368, August 2015.
[25] Peter Kordoš, et al., “RF Performance of InAlN/GaN HFETs and MOSHFETs With fT × LG up to 21 GHz·μm,” IEEE Electron Device Letters, vol. 31, no. 3, pp. 180-182, March 2010.
[26] S. Arulkumaran, et al., “Enhanced Breakdown Voltage With High Johnson’s Figure-of-Merit in 0.3-μm T-gate AlGaN/GaN HEMTs on Silicon by (NH4)2Sx Treatment,” IEEE Electron Device Letters, vol. 34, no. 11, pp. 1364-1366, Nov. 2013.
[27] S. Y. Liao, et al., “Gate Length Scaling Effect on High-Electron Mobility Transistors Devices Using AlGaN/GaN and AlInN/AlN/GaN Heterostructures,” Journal of Nanoscience and Nanotechnology, vol. 14, no. 8, pp. 6243-6246, August 2014.
[28] Ahmet Toprak, et al., “Effect of Gate Length on the DC and RF Performance of GaN HEMT Devices,” American Journal of Engineering Research, vol. 4, no. 9, pp-47-53, 2015.
[29] L. T. Xuan et al., "Normally-off AlGaN/GaN recessed MOS-HEMTs on normally-on epitaxial structures for microwave power applications," 2016 11th European Microwave Integrated Circuits Conference, pp. 65-68, Octorber 2016.
[30] Steven C. Binari, et al., "Trapping effects and microwave power performance in AlGaN/GaN HEMTs," IEEE Transactions on Electron Devices, vol. 48, no. 3, pp. 465-471, March 2001.
[31] R. Yeats, et al., "Gate slow transients in GaAs MESFETs-causes, cures, and impact on circuits," International Electron Devices Meeting, pp. 842-845, December 1988.
[32] J. C. Huang, et al., "An AlGaAs/InGaAs pseudomorphic high electron mobility transistor with improved breakdown voltage for X- and Ku-band power applications," IEEE Transactions on Microwave Theory and Techniques, vol. 41, no. 5, pp. 752-759, May 1993.
[33] S. Huang, et al., "Mechanism of PEALD-Grown AlN Passivation for AlGaN/GaN HEMTs: Compensation of Interface Traps by Polarization Charges," IEEE Electron Device Letters, vol. 34, no. 2, pp. 193-195, February 2013.
指導教授 綦振瀛(Jen-Inn Chyi) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明