博碩士論文 107022604 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:71 、訪客IP:18.226.186.225
姓名 蘇揚托(Krishna Himawan Subiyanto)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱 應用多核特徵線嵌入法進行高光譜影像分類
(Multiple Kernel Feature Line Embedding for Hyperspectral Image Classification)
相關論文
★ 基於SIFT演算法進行車牌認證★ 利用自適性權重估測機制改善傳統爬山演算法之對焦問題
★ 以核心模糊最近特徵線轉換法做人臉辨識★ 利用模糊最近特徵線轉換做人臉辨識
★ 基於Leap Motion之三維手寫中文文字特徵擷取★ 使用人臉辨識強化VPN身份認證
★ 應用核心最近特徵線轉換做人臉辨識★ 應用相鄰最近特徵空間轉換法於跌倒偵測
★ 使用Sentinel -2 影像提出空間、光譜與時間的深度學習架構製作佛羅里達州西南部於2017年受艾瑪颶風影響之紅樹林退化圖★ 利用深度學習方法檢測震前電離層異常
★ 建議的 LSST-Former 深度學習架構基於少樣本學習,用於小資料集的紅樹林損耗檢測★ 衛星降水資料於高衝擊天氣和滑坡事件的應用研究
★ 以深度學習進行遙測影像植生區域偵測★ 基於VIT及向日葵8號氣象衛星台灣區域雨量預測之可行性評估
★ 基於SPOT-7衛星影像之台灣土地使用分析★ 基於衛星影像之台灣土地利用分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 遙降維(DR)是一種旨在減少維數據還原為低維表示形式以便能夠分析大量多元數據的方法。DR方法對於提取產生大量光譜信息並避免出現維數問題的詛咒的高光譜圖像的重要特徵至關重要。諸如流形學習之類的DR方法方法,嘗試保留樣本之間的局部結構。諸如非線性方法之類的另一種方法試圖克服面對非線性分佈數據時將數據投影到低維子空間中的線性限制。這項研究提出了多核最近特徵線嵌入(MKFLE)用於高光譜圖像分類。MKL通過使用許多內核的線性組合來生成用於判別分析的非線性特徵空間。NFLE方法通過判別分析將NFL嵌入到變換中,旨在保留希爾伯特空間中樣本的局部結構。MKFLE的組合旨在克服噪聲變異和高度非線性的數據分佈,並在高光譜圖像分類中獲得更準確和穩定的結果。實驗是使用三種不同的高光譜數據集進行的,即印度松樹數據集,帕維亞市中心數據集和帕維亞大學數據集。結果表明,該方法比單核方法具有更穩定的分類結果。
摘要(英) Dimensionality reduction (DR) is a method that aims to reduce the high-dimensional data into lower-dimensional representation to be able to analyze a large amount of multivariate data. DR method is essential to extract important features of hyperspectral images that generate abundant spectral information and avoid the curse of dimensionality problem. DR method approach such as manifold learning, try to preserve the local structure among samples. Another approach such as nonlinear method, try to overcome the linear limitations in projecting data into the lower-dimensional subspace when faced with nonlinearly distributed data. This study presents multiple kernel feature line embedding (MKFLE) for hyperspectral image classification. MKL generates a non-linear feature space for discriminant analysis by using a linear combination of many kernels. NFLE method embedded the NFL into the transformation through discriminant analysis and aim to preserve the local structure of samples in the Hilbert space. The combination of MKFLE aims to overcome noise variation and high-degree non-linear data distribution and get a more accurate and stable result in hyperspectral image classification. Experiments were carried out using three different Hyperspectral datasets namely Indian Pines, Pavia City Center, and Pavia University. The result shows that the proposed approach has a more stable result of classification compared to the single kernel approach.
關鍵字(中) ★ DR
★ 高光譜圖像
★ MKL
★ NFLE
★ MKFLE
關鍵字(英) ★ DR
★ hyperspectral image
★ MKL
★ NFLE
★ MKFLE
論文目次 摘 要 i
ABSTRACT ii
Acknowledgements iii
Table of Contents iv
List of Figures v
List of Table vi
Chapter I. Introduction 1
1-1 Background 1
1-2 Challenge and Objective 2
1-3 Thesis Outline 2
Chapter II. Related Works 4
2-1 Multiple Kernel Learning 4
2-2 Nearest Feature Line Embedding 4
2-3 Kernelization of Linear Discriminant Analysis 6
Chapter III. Multiple Kernel Feature Line Embedding 8
3-1 Multiple Kernel Principal Component Analysis 8
3-2 Kernelization of Nearest Feature Line Embedding 13
Chapter IV. Result and Discussion 16
4-1 Study Area and Dataset 16
4-2 Classification Result 19
4-3 Discussion 25
Chapter V. Conclusion 27
Bibliography 28
參考文獻 Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10), 2385–2404. https://doi.org/10.1162/089976600300014980
Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720. https://doi.org/10.1109/34.598228
Cai, H., Mikolajczyk, K., & Matas, J. (2011). Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 338–352. https://doi.org/10.1109/TPAMI.2010.89
Chang, Y. L., Liu, J. N., Han, C. C., & Chen, Y. N. (2014). Hyperspectral image classification using nearest feature line embedding approach. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 278–287. https://doi.org/10.1109/TGRS.2013.2238635
Chen, Yin Nong, Han, C. C., Wang, C. T., & Fan, K. C. (2011). Face recognition using nearest feature space embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1073–1086. https://doi.org/10.1109/TPAMI.2010.197
Chen, Ying Nong, Hsieh, C. T., Wen, M. G., Han, C. C., & Fan, K. C. (2015). A dimension reduction framework for HSI classification using fuzzy and kernel NFLE transformation. Remote Sensing, 7(11), 14292–14326. https://doi.org/10.3390/rs71114292
He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. (2005). Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 328–340. https://doi.org/10.1109/TPAMI.2005.55
Jolliffe, I. T. (2002). Principal Component Analysis. Springer. https://books.google.com.tw/books?id=%5C_olByCrhjwIC
Kim, D. H., & Finkel, L. H. (2003). Hyperspectral image processing using locally linear embedding. International IEEE/EMBS Conference on Neural Engineering, NER, 2003-Janua, 316–319. https://doi.org/10.1109/CNE.2003.1196824
Kumar, A., Niculescu-Mizil, A., Kavukcoglu, K., & Daumé, H. (2012). A binary classification framework for two-stage multiple kernel learning. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2, 1295–1302.
Lanckriet, G. R. G., De Bie, T., Cristianini, N., Jordan, M. I., & Noble, S. (2004). A statistical framework for genomic data fusion. Bioinformatics, 20(16), 2626–2635. https://doi.org/10.1093/bioinformatics/bth294
Landgrebe, D. (2002). Hyperspectral Image Data Analysis. IEEE Signal Processing Magazine, January, 17–28.
Li, S. Z., & Lu, J. (1999). Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks, 10(2), 439–443. https://doi.org/10.1109/72.750575
Lin, Y.-Y., Liu, T.-L., & Fuh, C.-S. (2011). Multiple Kernel Learning for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1147–1160. https://doi.org/10.1109/TPAMI.2010.183
Mallapragada, S., Wong, M., & Hung, C. (2018). Dimensionality Reduction of Hyperspectral Images for Classification. Ninth International Conference on Information, 1–7.
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. R. (1999). Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), 41–48. https://doi.org/10.1109/NNSP.1999.788121
Nazarpour, A., & Adibi, P. (2015). Two-stage multiple kernel learning for supervised dimensionality reduction. Pattern Recognition, 48(5), 1854–1862. https://doi.org/10.1016/j.patcog.2014.12.001
Roweis, S. T., & Saul, L. K. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500), 2323–2326. https://doi.org/10.1126/science.290.5500.2323
Schölkopf, B., Smola, A., & Müller, K.-R. (1997). Kernel principal component analysis (pp. 583–588). https://doi.org/10.1007/BFb0020217
Vandenberghet, L., & Boyd, S. (1996). Semidefinite programming*. 38(1), 49–95.
Wang, Q. (2012). Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models. July 2012. http://arxiv.org/abs/1207.3538
Yan, S., Xu, D., Zhang, B., Zhang, H. J., Yang, Q., & Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 40–51. https://doi.org/10.1109/TPAMI.2007.250598
You, D., Hamsici, O. C., & Martinez, A. M. (2011). Kernel Optimization in Discriminant Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), 631–638. https://doi.org/10.1109/TPAMI.2010.173
You, D., & Martinez, A. M. (2010). Bayes optimal kernel discriminant analysis. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3533–3538. https://doi.org/10.1109/CVPR.2010.5539952
指導教授 陳映濃(Ying-Nong Chen) 審核日期 2020-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明