參考文獻 |
Baudat, G., & Anouar, F. (2000). Generalized discriminant analysis using a kernel approach. Neural Computation, 12(10), 2385–2404. https://doi.org/10.1162/089976600300014980
Belhumeur, P. N., Hespanha, J. P., & Kriegman, D. J. (1997). Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 19(7), 711–720. https://doi.org/10.1109/34.598228
Cai, H., Mikolajczyk, K., & Matas, J. (2011). Learning linear discriminant projections for dimensionality reduction of image descriptors. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(2), 338–352. https://doi.org/10.1109/TPAMI.2010.89
Chang, Y. L., Liu, J. N., Han, C. C., & Chen, Y. N. (2014). Hyperspectral image classification using nearest feature line embedding approach. IEEE Transactions on Geoscience and Remote Sensing, 52(1), 278–287. https://doi.org/10.1109/TGRS.2013.2238635
Chen, Yin Nong, Han, C. C., Wang, C. T., & Fan, K. C. (2011). Face recognition using nearest feature space embedding. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1073–1086. https://doi.org/10.1109/TPAMI.2010.197
Chen, Ying Nong, Hsieh, C. T., Wen, M. G., Han, C. C., & Fan, K. C. (2015). A dimension reduction framework for HSI classification using fuzzy and kernel NFLE transformation. Remote Sensing, 7(11), 14292–14326. https://doi.org/10.3390/rs71114292
He, X., Yan, S., Hu, Y., Niyogi, P., & Zhang, H. J. (2005). Face recognition using Laplacianfaces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 27(3), 328–340. https://doi.org/10.1109/TPAMI.2005.55
Jolliffe, I. T. (2002). Principal Component Analysis. Springer. https://books.google.com.tw/books?id=%5C_olByCrhjwIC
Kim, D. H., & Finkel, L. H. (2003). Hyperspectral image processing using locally linear embedding. International IEEE/EMBS Conference on Neural Engineering, NER, 2003-Janua, 316–319. https://doi.org/10.1109/CNE.2003.1196824
Kumar, A., Niculescu-Mizil, A., Kavukcoglu, K., & Daumé, H. (2012). A binary classification framework for two-stage multiple kernel learning. Proceedings of the 29th International Conference on Machine Learning, ICML 2012, 2, 1295–1302.
Lanckriet, G. R. G., De Bie, T., Cristianini, N., Jordan, M. I., & Noble, S. (2004). A statistical framework for genomic data fusion. Bioinformatics, 20(16), 2626–2635. https://doi.org/10.1093/bioinformatics/bth294
Landgrebe, D. (2002). Hyperspectral Image Data Analysis. IEEE Signal Processing Magazine, January, 17–28.
Li, S. Z., & Lu, J. (1999). Face recognition using the nearest feature line method. IEEE Transactions on Neural Networks, 10(2), 439–443. https://doi.org/10.1109/72.750575
Lin, Y.-Y., Liu, T.-L., & Fuh, C.-S. (2011). Multiple Kernel Learning for Dimensionality Reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(6), 1147–1160. https://doi.org/10.1109/TPAMI.2010.183
Mallapragada, S., Wong, M., & Hung, C. (2018). Dimensionality Reduction of Hyperspectral Images for Classification. Ninth International Conference on Information, 1–7.
Mika, S., Ratsch, G., Weston, J., Scholkopf, B., & Mullers, K. R. (1999). Fisher discriminant analysis with kernels. Neural Networks for Signal Processing IX: Proceedings of the 1999 IEEE Signal Processing Society Workshop (Cat. No.98TH8468), 41–48. https://doi.org/10.1109/NNSP.1999.788121
Nazarpour, A., & Adibi, P. (2015). Two-stage multiple kernel learning for supervised dimensionality reduction. Pattern Recognition, 48(5), 1854–1862. https://doi.org/10.1016/j.patcog.2014.12.001
Roweis, S. T., & Saul, L. K. (2000). Nonlinear Dimensionality Reduction by Locally Linear Embedding. Science, 290(5500), 2323–2326. https://doi.org/10.1126/science.290.5500.2323
Schölkopf, B., Smola, A., & Müller, K.-R. (1997). Kernel principal component analysis (pp. 583–588). https://doi.org/10.1007/BFb0020217
Vandenberghet, L., & Boyd, S. (1996). Semidefinite programming*. 38(1), 49–95.
Wang, Q. (2012). Kernel Principal Component Analysis and its Applications in Face Recognition and Active Shape Models. July 2012. http://arxiv.org/abs/1207.3538
Yan, S., Xu, D., Zhang, B., Zhang, H. J., Yang, Q., & Lin, S. (2007). Graph embedding and extensions: A general framework for dimensionality reduction. IEEE Transactions on Pattern Analysis and Machine Intelligence, 29(1), 40–51. https://doi.org/10.1109/TPAMI.2007.250598
You, D., Hamsici, O. C., & Martinez, A. M. (2011). Kernel Optimization in Discriminant Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence, 33(3), 631–638. https://doi.org/10.1109/TPAMI.2010.173
You, D., & Martinez, A. M. (2010). Bayes optimal kernel discriminant analysis. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 3533–3538. https://doi.org/10.1109/CVPR.2010.5539952 |