博碩士論文 106022001 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:70 、訪客IP:18.226.186.225
姓名 羅暐晴(Wei-Ching Lo)  查詢紙本館藏   畢業系所 遙測科技碩士學位學程
論文名稱
(LoRaWAN Positioning based on Time Difference of Arrival and Differential Correction)
相關論文
★ 物聯網制動功能之互操作性解決方案★ 地理網路爬蟲:具擴充及擴展性之地理網路資源爬行架構
★ TDR監測資訊平台之改善與 感測器觀測服務之建立★ 利用高解析衛星立體像對產製近岸水底地形
★ 整合oneM2M 及OGC SensorThings API 標準建立開放式物聯網架構★ 巨量物聯網資料之多重屬性索引架構
★ 高效率異質性時序資料表示法辨別系統★ A TOA-reflectance-based Spatial-temporal Image Fusion Method for Aerosol Optical Depth Retrieval
★ An Automatic Embedded Device Registration Procedure for the OGC SensorThings API★ 基於本體論與使用者興趣之個人化地理網路搜尋引擎
★ 利用本體論整合城市模型及物聯網開放式標準探討智慧城市之應用★ 運用無人機及影像套合法進行混凝土橋梁裂縫檢測
★ GeoRank: A Geospatial Web Ranking Algorithm for a GeoWeb Search Engine★ 應用高時空解析度遙測影像融合於海水覆蓋率之監測
★ 類神經網路逆向工程理解遙測資訊:以Landsat 8植被分類為例★ 基於語意網技術與WordNet促進地理網路資源之探索
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 過去幾年,物聯網(Internet of Things, IoT)吸引了來自各個領域的關注。在物聯網設備不斷監控環境屬性並提供可遠程控制功能的同時,物聯網設備的地理空間位置對許多提供空間分析的應用是個必要的資訊。然而,儘管全球定位系統(Global Navigation Satellite System, GNSS)是常用的定位技術,在每個物聯網設備中增加功耗和GNSS接收器的成本並不符合多數物聯網設備的需求。因此,為了不大幅增加功耗及硬體成本,本研究的想法是利用物聯網裝置的無線通訊協定進行定位。確切而言,本文提出了一種使用LoRa(Long Range)的本地無線通信協議的定位系統的設計和實現。LoRa是近年提出的一種低功耗無線通信技術,主要用於物聯網設備之間傳輸信息。使用者可以通過以下幾種位置相關參數(location dependent parameter, LDP)來估計設備的位置,包括接收信號的強度(received signal strength indicator, RSSI)、信號傳播的持續時間(time of arrival, TOA)、訊號到達閘道器之時間差(time difference of arrival, TDOA)、和到達角度(angle of arrival, AOA)。由於近期研究顯示TDOA比RSSI可達更好的精度,且TOA需要較高的硬體需求以提供信號傳輸的開始時間,AOA需要高敏天線等硬體需求,所以這項研究旨在檢驗TDOA位置算法在LoRa上的適用性,但此套算法不侷限於LoRa。此外,為了進一步提高定位精度,本研究通過設置參考節點,應用差分定位概念補償定位誤差,此方法命名為輕量化的差分TDOA (Light Differential TDOA, Light-DTDOA)。在設有九個未知節點和三個閘道器其場域大小為四平方公里的實驗中,結果顯示在使用差分修正前的誤差達到1.35264E+14公尺且提出的Light-DTDOA可提升精度至定位均方根誤差約44米。
摘要(英) Internet of Things (IoT) has been attracting attention from various domains over the last few years. While IoT devices continuously monitor environmental properties and provide remotely controllable functions, the geospatial location of IoT devices is an expensive information to obtain. Whereas Global Navigation Satellite System (GNSS) is a commonly-used positioning technology, large power-consumption and excessive cost of adding a GNSS receiver in every IoT device is not realistic. Therefore, this paper presents a design and implementation of a positioning system using a local wireless communication protocol called LoRaWAN. LoRaWAN is a low-power, wireless communication technology recently proposed to transmit information between IoT devices. A device’s position can be estimated by monitoring a location dependent parameter (LDP) such as received signal strength indicator (RSSI) measuring received signal strength, time of arrival (TOA) measuring the time duration of signal travel, angle of arrival (AOA) measuring the angle of receive signal, and time difference of arrival (TDOA) measuring the TOA differences between gateways. While recent studies show that TDOA can achieve a better accuracy than RSSI and TOA requires a signal’s start time information, AOA need high sensitivity antenna, this research aims at examining the applicability of TDOA position algorithm on LoRaWAN. To further improve positioning accuracy, we apply the concept of differential correction by setting up a reference node to compensate local positioning error. This method is named light differential TDOA (Light-DTDOA). In the experiment with nine nodes and three gateways, the results show that the positioning error is 1.35264E+14 meters without applying differential corrections and the proposed Light-DTDOA can improve accuracy to around 44 meters.
關鍵字(中) ★ 物聯網
★ 無線通訊定位
★ 到達時間差
★ LoRa
★ 差分修正
關鍵字(英) ★ Internet of Things
★ Wireless communication positioning
★ Time difference of arrival
★ LoRa
★ Differential correction
論文目次 摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures and Illustrations v
List of Tables vi
1. Introduction 1
2. Related Work 4
2.1 Communication protocol 4
2.1.1. IEEE802.15.4 4
2.1.2. Bluetooth/LE 4
2.1.3. IEEE 802.11 ah 5
2.1.4. Sigfox 5
2.1.5. DASH7 6
2.1.6. NB-IoT 6
2.1.7. LoRa Overview 6
2.2. Location dependent parameter 7
2.2.1. Received signal strength indicator (RSSI) 7
2.2.2. Time of arrival (TOA) 8
2.2.3. Time difference of arrival (TDOA) 8
2.2.4. Angle of arrival (AOA) 9
2.2.5. Differential Time difference of arrival (DTDOA) 10
2.3 Recent research related to LPWAN positioning 11
3. Methodology .13
3.1. System Architecture 13
3.2. Time difference of arrival (TDOA) 13
3.3. Light Differential Time difference of arrival (Light-DTDOA) 15
4. Experimental Results 18
5. Conclusions and Future Work 32
Reference 33
參考文獻 A. Rico-Alvarino et al. (2016). An Overview of 3GPP Enhancements on Machine to Machine Communications. IEEE Communications Magazine, vol. 54, no. 6, 14-21.
Adame, T., Bel, A., Bellalta, B., Barcelo, J., Oliver, M. (2014). IEEE 802.11 ah: the wifi approach for M2M communications. IEEE Wirel. Commun, 21, 144–152.
Baronti, P., Pillai, P., Chook, V.W., Chessa, S., Gotta, A., Hu, Y.F. (2007). Wireless sensor networks: A survey on the state of the art and the 802.15. 4 and ZigBee standards. Comput. Commun, 30, 1655–1695.
Bernat Carbonés Fargas, Martin Nordal Petersen (2017). GPS-free Geolocation using LoRa in Low-Power. Global Internet of Things Summit (GIoTS).
Berni, A.J., Gregg, W.D. (1973). On the utility of chirp modulation for digital signaling. IEEE Trans. Commun, 21, 748–751.
Blanchard, Walter (September 1991). Hyperbolic Airborne Radio Navigation Aids. The Journal of Navigation. 44 (3).
Brida, P., Cepel, P., Duha, J. (2006). The accuracy of RSS based positioning in GSM networks. IEEE CONFERENCS, Microwaves, Radar & Wireless Communications.2006, MIKON 2006, International Conference, Digital Object Identifier: 10.1109/MIKON.2006.4345237, Publication Year: 2006, page(s): 541-544.
Dragino (n. d.) (2019). Lora/GPS HAT - Wiki for Dragino Project Retrieved August 20, 2019 From http://wiki.dragino.com/index.php?title=Lora/GPS_HAT
F. Winkler, E. Fischer, E. Graß and G. Fischer (2005). A 60 GHz OFDM Indoor Localization System Based on DTDOA. http://www.mobilesummit2005.org, Poster session at 14th IST Mobile & Wireless Communications Summit, Dresden, Germany, 19-23 June.
Guibene, W., Nolan, K.E., Kelly, M.Y. (2015). Survey on clean slate cellular-iot standard proposals. In Proceedings of the 2015 IEEE International Conference on Computer and Information Technology, Ubiquitous Computing and Communications, Dependable, Autonomic and Secure Computing, Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM), Liverpool, 1596–1599.
IEEE 802 Working Group and Others (2012). IEEE Standard for Local and Metropolitan Area Networks—Part 15.4:Low-Rate Wireless Personal Area Networks (LR-WPANs), IEEE Std 802.15.4-2011: New York, NY, USA.
ISO-IEC. (2014). ISO/IEC 18000-7:2014 Information Technology—Radio Frequency Identification for Item Management—Part 7: Parameters for Active Air Interface Communications at 433 MHz, ISO: Geneva, Switherland.
Junkins, J.L. (1978). An introduction to optimal estimation of dynamical systems.
Ka-Ho Lam, Chi-Chung Cheung and Wah-Ching Lee (2017). LoRa-based localization systems for noisy outdoor environment. IEEE 13th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob), 13th Rome Italy.
Kamiar Radnosrati, Gustaf Hendeby, Carsten Fritsche, Fredrik Gunnarsson and Fredrik Gustafsson (2017). Performance of OTDOA Positioning in Narrowband IoT Systems.
Khorov, E., Lyakhov, A., Krotov, A., Guschin, A. (2015). A survey on ieee 802.11 ah: An enabling networking technology for smart cities. Comput. Commun. , 58, 53–69.
Libelium Comunicaciones Distribuidas S.L. (2016). Waspmote LoRaWAN Networking Guide, v7.0, pp. 5-11.
LoRa Alliance™ Strategy Committee (2018). GEOLOCATION WHITEPAPER. https://lora-alliance.org/sites/default/files/2018-04/geolocation_whitepaper.pdf.
M. Centenaro, S. Member, L. Vangelista, and S. Member (2016). Long-Range Communications in Unlicensed Bands: the Rising Stars in the IoT and Smart City Scenarios. IEEE Wireless Communications, vol. 23, no. 5, 60–67.
Margelis, G., Piechocki, R., Kaleshi, D., Thomas, P. (2015). Low throughput networks for the IoT: Lessons learned from industrial implementations. In Proceedings of the 2015 IEEE 2nd World Forum on Internet of Things (WF-IoT), Milan, Italy, 14–16 december 2015, 181–186.
Miya Fukumoto, Takuya Yoshihiro (2019). Improving Accuracy of Localization with Portable APs in Ultra-Narrow-Band-based LPWA Networks. 2019 Twelfth International Conference on Mobile Computing and Ubiquitous Network (ICMU), Conference.
P. Misra and P. Enge, Global Positioning System, Lincoln, MA: Ganga-Jamuna Press, 2006.
Patwari N, Hero AO, Perkins M, Correal NS, O’dea RJ. (2003). Relative location estimation in wireless sensor networks. IEEE Trans Signal Process, 51(8):2137–48.
Ramsey Faragher , Robert Harle (2015). Location Fingerprinting With Bluetooth Low Energy Beacons. IEEE Journal on Selected Areas in Communications, 33(11),2418-2428.
S. Venkatraman, J. Caffery Jr. (2004). Hybrid TOA/AOA techniques for mobile location in non-line-of-sight environments. IEEE Wireless Communications and Networking Conference (WCNC’04), vol. 1, 2004, 274–278.
T. Lestable, M. Lalam and M. Grau (2015). Location-Enabled LoRa IoT Network : ‘Geo-LoRa-ting’ your assets. Presentation.
Want, R., Schilit, B., Laskowski, D. (2013). Bluetooth le finds its niche. IEEE Pervasive Comput, 12, 12–16.
Weyn, M., Ergeerts, G., Wante, L., Vercauteren, C., Hellinckx, P. (2013). Survey of the DASH7 alliance protocol for 433 MHz wireless sensor communication.
Xingqin Lin, Johan Bergman, Fredrik Gunnarsson, Olof Liberg, Sara Modarres Razavi, Hazhir Shokri Razaghi , Henrik Rydn, Yutao Sui (2017). Positioning for the Internet of Things: A 3GPP Perspective, IEEE Communications Magazine, vol. 55, Issue 12, pp. 179 185, Dec.
指導教授 黃智遠(Chih-Yuan Huang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明