博碩士論文 105353020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.17.74.227
姓名 吳德宏(De-Hong Wu)  查詢紙本館藏   畢業系所 機械工程學系在職專班
論文名稱 3D列印導電材料之屏蔽電磁干擾效果分析
(The Study of 3D Print Graphene/Polylactic Acid Conductive Polymer on Electromagnetic Interference Shielding Effectiveness)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 由於工業技術的進步及日常生活水準的提高,使得一些電子、電機、資訊及通訊等電器設備急劇增加,這些電器設備所產生的高密度電磁波已形成一個新的公害問題,包括電器線路本身散發電磁輻射以及其接收外界傳來的電磁輻射。電磁波干擾所形成的問題,隨著電器產品的朝向小體積、高功能、低功率與低電位發展而更趨嚴重。一般傳統電磁波干擾防護措施,大多採用銀、銅等高導電電磁屏蔽材料,但已無法因應輕、薄且客製化設計的需求,藉由積層製造技術的引入,使得生產變得有客製化及製作複雜外型輪廓、輕質等特性,具有相當大的發展潛力。本文結合積層製造技術(Additive Manufacturing, AM)與石墨烯聚乳酸材料進行田口方法分析,得到電磁防護材料的拉伸強度及電磁波屏蔽效果。
綜合上述,本研究是利用熔融沉積成型技術(Fused Deposition Modeling, FDM)列印不同導電聚乳酸(Polylactic acid )線材,內容分為二部分:第一部分是以石墨烯聚乳酸為3D列印材料,藉由列印設備能控制的範圍內獲得最佳拉伸強度。本實驗製程參數為噴頭溫度、噴頭移動速度、層厚大小,以田口式實驗設計,採L4直交表進行實驗,並且利用變異數分析(Analysis of variance, ANOVA)尋找影響結果較顯著的控制因子。經由實驗結果,在機械強度方面由品質特性反應表的S/N反應圖顯示出,最佳之組合為噴嘴速度40mm/s、噴嘴溫度240°C、層厚大小0.15mm,該參數獲得拉伸強度31.88 MPa為最佳値。經由變異數分析找出顯著控制因子,顯著控制因子影響強度的貢獻度最大,參數包含噴嘴溫度、層厚大小。比對品質特性反應表最佳化分析與ANOVA所得參數最佳化組合的結果相同,如此可確保實驗準確性。第二部分為電磁波屏蔽效果探討,量測鋁片、聚乳酸及含有石墨烯、銅的聚乳酸做屏蔽電磁效果比較,在儀器頻率範圍30Hz~300Hz下量測變壓器得知,以聚乳酸為基底摻雜不同材料且在相同距離情況下,屏蔽效果為石墨烯>銅>純聚乳酸,隨著鋁片厚度增加,屏蔽效果增加。最後,提出可能改進的建議及未來的應用。
摘要(英) Due to the advancement of industrial technology and the improvement of the level of daily life, some electrical equipment such as electronics, motors, information and communications have increased dramatically. The high-density electromagnetic waves generated by these electrical equipment have formed a new pollution problem, including the electromagnetic radiation of electrical circuits themselves. Radiation and its reception of electromagnetic radiation from the outside world. The problems caused by these electromagnetic interferences become more and more serious as the electrical products develop towards small size, high function, low power and low potential. The general traditional electromagnetic wave interference protection measures mostly use silver, copper and other highly conductive electromagnetic shielding materials, but they have been unable to respond to the needs of light, thin and customized designs. With the introduction of laminated manufacturing technology, production has become customized And the characteristics of making complex outlines and light weight have considerable development potential. In this paper, the additive manufacturing technology (Additive Manufacturing, AM) and graphene polylactic acid material are used to analyze the Taguchi method, and the strength of the electromagnetic protection material and the electromagnetic wave shielding effect are obtained.
To sum up the above, this study used Fused Deposition Modeling (FDM) to print different conductive polylactic acid (Polylactic acid) wires. The content is divided into two parts: The first part is PLA (Conductive Graphene Filament) for 3D printing The material can get the best tensile strength within the controllable range of printing equipment. The parameters of this experimental process are the nozzle temperature, nozzle moving speed, and the thickness of the layer. The Taguchi experiment design is adopted, and the L4 orthogonal table is used for the experiment. The ANOVA variation analysis is used to find the control factors that have more significant effects.According to the experimental results, the mechanical properties are shown in the S/N reaction chart of the quality characteristic reaction table. The best combination is nozzle speed 40mm/s, nozzle temperature 240°C, and layer thickness 0.15mm. The strength of 31.88 MPa is the best value. Through the analysis of variance, the significant control factors are found. The significant control factors have the largest contribution to the intensity. The parameters include nozzle temperature and layer thickness. The results of the optimized analysis of the comparison quality characteristic response table and the optimized combination of parameters obtained by the ANOVA variation analysis are the same, which can ensure the accuracy of the experiment. The second part is the discussion of electromagnetic wave shielding effect. The measurement of aluminum foil, polylactic acid and polylactic acid containing graphene and red copper is used to compare the electromagnetic shielding effect. The transformer is measured in the frequency range of 30Hz~300Hz. When the substrate is doped with different materials and the same distance, the shielding effect is graphene>red copper>pure polylactic acid. As the thickness of the aluminum sheet increases, the shielding effect increases. Finally, put forward suggestions for possible improvements and future applications.


Keywords: Graphene, Additive Manufacturing, Fused Deposition Modeling, Taguchi method
Electromagnetic shielding
關鍵字(中) ★ 石墨烯
★ 積層製造
★ 熔融沉積成型
★ 田口方法
★ 電磁波屏蔽
關鍵字(英)
論文目次 目錄
摘要 I
ABSTRACT II
誌謝 IV
圖目錄 VI
表目錄 VIII
第一章 緒論 1
1-1前言 1
1-2文獻回顧 3
1-3研究動機與目的 11
1-4論文架構 13
第二章 理論說明 14
2-1積層製造技術 14
2-2電磁波遮蔽原理 18
2-3材料性質檢測 20
2-4田口實驗設計 23
第三章 研究方法與流程 31
3-1實驗材料與規格 31
3-2列印機台改良 34
3-3實驗流程與規劃 38
3-4石墨烯聚乳酸積層製造最佳參數選擇 38
3-5電磁波遮蔽量測方法 40
3-6導電率量測方法 42
第四章 結果與討論 43
4-1石墨烯聚乳酸積層製造最佳化實驗結果 43
4-2電磁波遮蔽效率實驗結果 47
4-3導電率量測實驗結果 51
第五章 結論與未來展望 52
5-1結論 52
5-2未來展望 52
參考文獻 54
參考文獻 參考文獻
[1]H. I. Medekkub-Castillo and J.E.P Torres, "Rapid prototyping and manufacturing: A review of current technologies", in 2009 ASME International Mechanical Engineering Congress and Expositionm IMECE2009, November 13, 2009 – Nevember 19, 2009, Lake Buena Vista, FL, United states, pp. 609-621, 2010.
[2]K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, Vol. 306, pp. 666-669, 2004.
[3]D. V. Kosynkin, A. L. Higginbotham, A. Sinitskii, J. R. Lomeda, A. Dimiev, B. K. Price1 and J. M. Tour, "Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons", Nature, Vol. 458, pp. 872, 2009.
[4]L. Jiao, L. Zhang, X. Wang, G. Diankov and H. Dai, "Narrow graphene nanoribbons from carbon nanotubes", Nature, Vol. 458, pp. 877, 2009.
[5]成會明,奈米碳管,五南圖書出版股份有限公司,民國93年。
[6]C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First and W. A. de Heer, "Electronic confinement and coherence in patterned epitaxial graphene", Science, Vol. 312, pp. 1191-1196, 2006.
[7]X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner A. Velamakanni, I. Jung, E. Tutuc, S. K. Banerjee, L. Colombo and R. S. Ruoff, "Large-area synthesis of high-quality and uniform graphene films on copper foils", Science, Vol. 324, pp. 1312-1314, 2009.
[8]Y. M. Lin, K. A. Jenkins, A. Valdes-Garcia, J. P. Small, D. B. Farmer and P. Avouris, "Operation of graphene transistors at gigahertz frequencies", Nano Lett, Vol. 9, pp. 422-426, 2009.
[9]Y. M. Lin, C. Dimitrakopoulos, K. A. Jenkins, D. B. Farmer, H. Y. Chiu, A. Grill and P. Avouris, "100-GHz transistors from wafer-scale epitaxial graphene", Science, Vol. 327, pp. 662, 2010.
[10]C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang and L. J. Li, "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors", ACS Nano, Vol. 4, pp. 5285-5292, 2010.
[11]M. Hofmann, D. Nezich, A. Reina and J. Kong, "In-situ sample rotation as a tool to understand chemical vapor deposition growth of long aligned carbon nanotubes", Nano Lett, Vol. 9, pp. 30-35, 2008.
[12]S. Dul, L. Fambri and A. Pegoretti, "Fused deposition modelling with ABS-graphene nanocomposites", Composites: Part A, Vol. 85, pp. 181-191, 2016.
[13]X. Wei, D. Li, W. Jiang, Zheming. Gu, X. Wang, Z. Zhang and Z. Sun, "3D printable graphene composites-supplementary information", Scientific Reports, Vol. 5, 11181, 2015.
[14]S. H. Xie, Y. Y. Liu and J. Y. Li, "Comparison of the effective conductivity between composites reinforced by graphene nanosheets and carbon nanotubes", Applied Physics Letters, Vol. 92 , 243121, 2008.
[15]H. J. Salavagione, G. Martinez, and M .A. Gomez, "Synthesis of poly (vinyl alcohol)/reduced graphite oxide nanocomposites with improved thermal and electrical properties", Journal of Materials Chemistry, Vol. 19, pp. 5027-5032, 2009.
[16] S. J. Leigh, R. J. Bradley, C. P. Purssell, D. R. Billson and D. A. Hutchins, "A simple, low-cost conductive composite material for 3d printing of electronic sensors", PLos One, Vol. 7, 49365, 2012.
[17]IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes IMWS-AMP, Pavia, Italy, 2017.
[18]ASTM International. ASTM D3039/D3039M-00, Standard Test Method for Tensile Properties of Polymer Matrix Composite Materials , 2006.
[19]M. Li, J. Nuebel, J. L. Drewniak, R. E. Dubroff, T. H. Hubing and T. V. Doren, "EMI from airflow aperture arrays in shielding enclosure experiments, FDTD and MOM modeling", IEEE Transactions on Electomagnetic Compatibility, Vol. 42, pp. 265-275, 2000.
[20]R. C. Hansen and J. R. Moser, "Loop-shielding-loop shielding effectiveness", IEEE Transaction on Electromagnetic Compatibility, Vol. 41, pp. 144-146, 1999.
[21]G. Alaimo, S. Marconi, L. Costato and F. Auricchio, "Influence of meso-structure and chemical composition on FDM 3d-printed parts", Composites Part B, Vol. 3, 27100, 2017.
[22]L. Hongmin, Engineering Electromagnetic Compatibility, Xidian University Press, 2003.
[23]M. Shuangbin, Modeling and analysis of FDTD on shield with aperture, Doctor degree paper, 2008.
[24]A. R. Studart, "Additive manufacturing of biologically-inspired materials", Chemical Society Reviews, Vol. 45, pp. 359-376, 2016.
[25]C.W. Hull, Apparatus for production of three-dimensional objects by stereo-lithography, U.S. Patent, Vol. 4, pp. 330, 1986.
[26]S. Junk, J. Sämann-Sun, M. Niederhofer, "Application of 3d printing for the rapid tooling of thermoforming moulds", Proceedings of the 36th International Matador Conference, Vol. 4 pp. 369-372, 2010.
[27]K. Lee, Principles of CAD/CAM/CAE systems, University: Pearson Higher Education & Professional Group, 1999.
[28]曾竣煌,「熔融沉積成型技術之路徑規劃與提升製造效率研究」,碩士論文,國立中央大學,民國106年。
[29]工業技術研究院化學工業研究所,「導電性高分子專題調查報告」,1998。
[30]J. D. M. Osburnm and R. J. Donald, A handbook series on electromagnetic interference and compatibility (12 volume set), Interference Control Technologies, Inc., 1988.
[31]D. K. Cheng. Field and Wave Electromagnetic, 2nd Edition, Addison-Wesley publishing Company, 1989.
[32]劉偉均,材料實驗,台北市,華泰書局,民國 86 年。
[33]T. Schmidt, F. Gärtner, H. Assadi and H. Kreye, “Development of a generalized parameter window for cold spray deposition”, Acta materialia, Vol. 54, pp. 729-742, 2006.
[34]蘇朝墩,產品穩健設計:田口品質工程方法的介紹和應用,第二版,中華民國品質協會,民國88年。
[35]李輝煌,田口方法品質設計的原理與實務,第四版,高立圖書有限公司,民國100年。
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明