參考文獻 |
[1] H.V. Panossian, Structural damping enhancement via non-obstructive particle damping technique, J. Vib. Acoust. 114 (1992) 101-105.
[2] T. Chen, K. Mao, X. Huang, M.Y. Wang, Dissipation mechanisms of non-obstructive particle damping using discrete element method, Smart. Structure. Mat. 4331 (2001) 294-301.
[3] K. Mao, M.Y. Wang, Z. Xu, T. Chen, Simulation and Characterization of Particle Damping
in Transient Vibrations, J. Vib. Acoust. (2004) 126.
[4] M.R. Duncan, C.R. Wassgren, C.M. Krosgrill, The damping performance of a single particle impact damper, J. Sound. Vib. 286 (2005) 123-144.
[5] W. Liu, G.R. Tomlinson, J.A. Rongong, The dynamic characterization of disk geometry
particle dampers, J. Sound. Vib. 280 (2005) 849-861.
[6] Z. Lu, X. Lu, H. Jiang, S. F.Masri, Discrete element method simulation and experimental validation of particle damper system, Int. J. Comp. Aid. Eng. S. 31 (2014) 4.
[7] W.Q. Xiao, Y.X. Huang, H. Jiang, H. Lin, J.N. Li, Energy dissipation mechanism and experiment of particle dampers for gear transmission under Centrifugal Loads, Particuology. 27 (2016) 40-50.
[8] P.A. Cundall, O.D.L. Strack, A discrete numerical model for granular assemblies, Geotechnique. (1979) 47-65.
[9] C. O’Sullivan, J.D. Bray, Selecting a suitable time step for discrete element simulations that use the central difference time integration scheme, Eng. Computation. 21 (2004) 278-303.
[10] K. Mao, M.Y . Wang, Z. Xu, T. Chen, DEM simulation of particle damping, Powder Technol. 142 (2004) 154-165.
[11] C.X. Wong, M.C. Daniel, J.A. Rongong, Energy dissipation prediction of particle dampers, J. Sound. Vib. 319 (2009) 91-118.
[12] Z. Lu, S.F. Masri, X. Lu, Parametric studies of the performance of particle dampers under harmonic excitation, Struct. Control. Hlth. 18 (2009) 79-98.
[13] MSC.Software: Using ADAMS/Solver. Mechanical Dynamics,Inc., Ann Arbor, Michigan, 1997.
[14] J.B. McConville, J.F. McGrath, Introduction to ADAMS Theory. Mechanical Dynamics Inc, Michigan, 1998.
[15] A.A. Shabana, Dynamics of Multibody Systems, 3rd edn.Cambridge University Press, Cambridge, 2005.
[16] W. Schiehlen, Computational dynamics: theory and applications of multibody systems, Eur. J. Mech. A/Solids. 25(4) (2006) 566–594.
[17] P. Flores, J. Ambrósio, J.C.P. Claro, H.M. Lankarani, Kinematics and Dynamics of Multibody Systems with Imperfect Joints, Springer. (2008).
[18] L.X. Xu, An approach for calculating the dynamic load of deep groove ball bearing joints in planarmultibody systems, Nonlinear Dyn. 70 (2012) 2145-2161.
[19] M. Langerholc, M. Cesnik, J. Slavic, M. Boltear, Experimental validation of a complex, large scale, rigid-body mechanism, Eng. Struct. 36 (2012) 220-227.
[20] X.M. Bai, B. Shah, L.M. Keer, Q.J. Wang, R.Q. Snurr, Particle dynamics simulations of piston-based paricle damper, Powder Technol. 189 (2009) 115-125.
[21] Z. Lu, X. Lu, S.F. Masri, Studies of the performance of particle dampers under dynamic loads, J. Sound. Vib. 329 (2010) 5415-5433.
[22] D.Q. Wang, C.J. Wu and R.C. Yang, Free vibration of the damping beam using co simulation method based on the MFT, Int. J. Acoust. Vib. 20 (2015) 251-257.
[23] X. Lei and C.J. Wu, Non-obstructive particle damping using principles of gas-solid flows, J. Mech. Sci. Technol. 31 (2017) 1057-1065.
[24] S. Lommen, G. Lodewijks, D.L. Schott, Co-simulation framework of discrete element method and multibody dynamics models, Eng. Computation. 35 (2018) 1481-1499.
[25] Y.C. Chung, S.S. Hsiau, H.H. Liao, J.Y. Ooi, An improved PTV technique to evaluate the velocity field of non-spherical particles, Powder technol. 202 (2010) 151-161.
[26]線性滑軌_TC,銀泰科技股份有限公司,第 B16 頁,2009。
[27] Singiresu s. Rao, Mechanical vibrations fifth edition in si units. 2011, pp. 164-166.
[28] Y.C. Chung, C.W. Wu, C.Y. Kuo, S.S. Hsiau, A rapid granular chute avalanche impinging on a small fixed obstacle: DEM modeling, experimental validation and exploration of granular stress, Appl. Math. Model. 74 (2019) 540-568. |