博碩士論文 107323107 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:18.217.144.32
姓名 葉尚翰(Shang-Han Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱再生化學電池恆溫機構設計分析研究
(A Constant Temperature Mechanism Design and Analysis for Thermally-Regenerative Ammonia-Based Flow Battery)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 低溫熱能(< 200℃)是業界大量且尚未開發的能源,廣泛存在於我們的生產與生活中,包括工業廢熱、地熱、太陽能熱以及海洋溫差能熱等,其儲量巨大、種類繁多,尤其是對於工業廢熱的回收存在著廣闊的利用前景,但由於缺乏有效和高成本效益的回收方法,低溫熱能一般不被工業所採用,因而形成熱污染而導致環境問題。將低溫熱能進行有效的回收,既有利於解決能源枯竭問題,又有益於緩解環境污染問題。
本論文主要是探討熱再生化學電池( Thermally-Regenerative Ammonia-Based Flow Battery, TRAB )恆溫機構之設計與分析,研究中會以數值模擬分析,找出熱再生化學電池模組恆溫性能設計參數,以滿足陰陽極腔體維持操作溫度40~80℃達成優化蒸餾和操作溫度條件,以保持運轉效率,並分析模組熱運轉時熱損失,希望藉由透過數值模擬分析來設計出最佳恆溫機構,提高熱再生化學電池之使用效率以及實用性。
除了恆溫機構之模擬分析,本論文也進行設計以及製作熱再生化學電池模組,希望透過串聯五組電池的方式提升其發電電壓與電功率密度,並進行發電實驗與可變因子發電試驗,其中可變因子試驗為分別透過改變氨水濃度、電解液溫度、磁場強度三項可變因子,比較不同參數所帶來的影響,並且與模擬結果比較,探討恆溫機構設計的可行性,希望能將熱再生化學電池效率提升,朝向量產化的目標前進。
摘要(英) Low-grade thermal energy (< 200°C) is a large amount of untapped energy produced by various industrial plants and can also be obtained from geothermal sources. Low-grade thermal energy is widely used in our production and life, including industrial waste heat, geothermal, solar energy and ocean thermal energy. Its reserves are huge and varied, especially for the recycling of industrial waste heat. But due to the lack of efficient and cost-effective recycling methods, low- grade thermal energy is generally not adopted by industry, and consequently forming thermal pollution and causing environmental problems. The effective recovery of low-grade thermal energy is not only conducive to solving the problem of energy depletion, but also beneficial to alleviating environmental pollution problems.
This paper focuses on the constant temperature mechanism design and analysis for Thermally-Regenerative Ammonia-Based Flow Battery (TRAB) by using of COMSOL Multiphysics. In this research, we will analyze heat transfer parameters of the constant temperature mechanism to achieve the optimal distillation and operating temperature ( 40~80℃) to maintain the operating efficiency and analyze the heat of the module during thermal operation loss,and hope to design the best constant temperature mechanism to improve the efficiency and practicality of Thermally-Regenerative Ammonia-Based Flow Battery.
關鍵字(中) ★ 綠色能源
★ 熱再生氨電池
★ 低溫熱能
★ 熱再生
★ COMSOL
關鍵字(英) ★ Green energy
★ Thermally regenerative ammonia-based battery
★ Low-grade thermal energy
★ Thermally-regenerative
★ COMSOL
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vii
表目錄 x
符號說明 xi
第一章 緒論 1
1-1 前言 1
1-2 研究目的與動機 1
第二章 文獻回顧及理論 3
2-1全球環境與能源現況 3
2-1-1 全球暖化 3
2-1-2 石化燃料 5
2-1-3 綠色能源 7
2-2 低溫熱能 8
2-2-1 熱滲透能量轉換系統 9
2-2-2 熱再生電化學循環 11
2-2-3 熱再生化學電池 12
2-3 電解液介紹 14
2-4 磁場輔助電化學反應 15
2-5 隔熱材介紹 17
2-6 COMSOL Multiphysics介紹 20
2-6-1 固體熱傳模組 20
第三章 研究方法與設備 22
3-1 研究設備 22
3-2 研究方法 25
3-3 COMSOL模型建立 26
3-3-1 熱再生化學電池組 26
3-3-2 蒸餾瓶 31
3-4 熱再生化學電池模組設計與組裝 35
3-4-1 熱再生化學電池單元 36
3-4-2 熱再生化學電池模組與蒸餾模組 39
第四章 結果與討論 44
4-1 COMSOL模擬分析結果 44
4-1-1 熱再生化學電池組恆溫性能模擬分析 44
4-1-2 蒸餾瓶加熱時間模擬分析 48
4-2 熱再生化學電池模組發電及測漏試驗 51
4-3 蒸餾測試 53
4-4 熱再生化學電池可變因子發電試驗 53
4-4-1 氨水濃度發電試驗 54
4-4-2 電解液溫度發電試驗 55
4-4-3 磁場強度發電試驗 56
第五章 結論 57
5-1 COMSOL模擬分析 57
5-1-1 熱再生氨電池組恆溫性能模擬分析 57
5-1-2 蒸餾瓶加熱時間模擬分析 57
5-2 熱再生化學電池堆進行發電及測漏試驗 58
5-3 蒸餾測試 58
5-4 熱再生化學電池可變因子發電試驗 58
5-4-1 氨水濃度發電試驗 58
5-4-2 電解液溫度發電試驗 59
5-4-3 磁場強度發電試驗 59
5-5 未來發展 59
參考文獻 60
參考文獻 [1] 郭啟榮,徐菘蔚,ORC低階熱能發電技術與應用,綠能機械技術專輯,財團法人工業技術研究院,Vol. 367,pp. 66-78,2013年。
[2] H.-M. Zhang, B. Huang, J. Lawrimore, NOAA Global Surface Temperature Dataset (NOAAGlobalTemp), Ver. 5, NOAA National Centers for Enviromental Information, 2020.
[3] C. J. Campbell, J. H. Laherrère, “The End of Cheap Oil”, Scientific American, pp. 78-83, 1998.
[4] B. L. Anderson, A. S. Greenberg, B. G. Adams, “In Regenerative EMF Cells”, American Chemical Society, Vol. 64, Ch. 15, pp. 213-276, (1967).
[5] O. Schaetzlel, C. J. N. Buisman, “Salinity Gradient Energy: Current State and New Trends”, Engineering, Vol. 1, Iss. 2, pp. 164 -166, 2015.
[6] A. P. Straub, N. Y. Yip, S. Lin, J. Lee, M. Elimelech, “Harvesting low-grade heat energy using thermo-osmotic vapour transport through nanoporous membranes”, Nature Energy, Vol. 1, Article No. 16090, 2016.
[7] S. Lin, N. Y. Yip, M. Elimelech, “Direct contact membrane distillation with heat recovery: Thermodynamic insights from module scale modeling”, Journal of Membrance Science, Vol. 453, pp. 498– 515, 2014.
[8] Y. Yang, S. W. Lee, H. Ghasemi, J. Loomis, X. Li, D. Kraemer, G. Zheng, Y. Cui, G. Chen, “Charging-free electrochemical system for harvesting low-grade thermal energy”, Proceedings of the National Academy of Sciences, Vol. 111, No. 48, pp. 17011-17016, 2014.

[9] F. Zhang, J. Liu, W. Yang, B. E. Logan, “A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power”, Energy & Environmental Science, Vol. 8, pp. 343-349, 2015.
[10] X. Zhu, M. Rahimi, C. A. Gorski, B. Logan, “A Thermally‐Regenerative Ammonia‐Based Flow Battery for Electrical Energy Recovery from Waste Heat”, ChemSusChem, Vol. 9, pp. 873-879, 2016.
[11] A. Ramos, M. Miranda-Hernández, I. Gonzalez, “Influence of Chloride and Nitrate Anions on Copper Electrodeposition in Ammonia Media”, Journal of The Electrochemical Society, Vol. 148, Iss. 4, pp. C315-C321, 2001.
[12] M. Rahimi, A. D′Angelo, C. A. Gorski, O. Scialdone, B. E. Logan, “Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery”, Journal of Power Sources, Vol. 351, pp. 45-50, 2017.
[13] M. Rahimi, T. Kim, C. A. Gorski, B. E. Logan, “A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity”, Journal of Power Sources, Vol. 373, pp. 95-102, 2018.
[14] F. Zhang, N. LaBarge, W. Yang, J. Liu, B. E. Logan, “Enhancing low-grade thermal energy recovery in a thermally regenerative ammonia battery using elevated temperatures”, ChemSusChem, Vol. 8, Iss. 6, pp. 1043-1048, 2015.
[15] S. Chu, A. Majumdar, “Opportunities and challenges for a sustainable energy future”, Nature, Vol. 488, pp. 294-303, 2012.

[16] F. Vicari, A. D’Angelo, Y. Kouko, A. Loffredi, A. Galia, O. Scialdone, “On the regeneration of thermally regenerative ammonia batteries”, Journal of Applied Electrochemistry, Vol. 48, pp. 1381-1388, 2018.
[17] S. B. Riffat, X. Ma, “Thermoelectrics: a review of present and potential applications”, Applied Thermal Engineering, Vol. 23, Iss. 8, pp. 913-935, 2003.
[18] R. Hu, B. A. Cola, N. Haram, J. N. Barisci, S. Lee, S. Stoughton, G. Wallace, C. Too, M. Thomas, A. Gestos, M. E. dela Cruz, J. P. Ferraris, A. A. Zakhidov, R. H. Baughman, “Harvesting waste thermal energy using a carbon-nanotubebased thermoelectrochemical cell”, Nano Letters, Vol. 10, Iss. 3, pp. 838-846, 2010.
[19] M. A. Lazar, D. Al-Masri, D. R. Macfarlane, J. M. Pringle, “Enhanced thermal energy harvesting performance of a cobalt redox couple in ionic liquid-solvent mixtures”, Physical Chemistry Chemical Physics, Vol. 18, Iss. 3, pp. 1404-1410, 2016.
[20] P. Peljo, D. Lloyd, N. Doan, M. Majaneva, K. Kontturi, “Towards a thermally regenerative all-copper redox flow battery”, Physical Chemistry Chemical Physics, Vol. 16, Iss. 7, pp. 2831-2835, 2014.
指導教授 黃俊仁 李雄(Jiun-Ren Hwang Shyong Lee) 審核日期 2020-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明