博碩士論文 105323082 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:40 、訪客IP:3.138.114.38
姓名 葉泰邑(Tai-Yi Yeh)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 水中微粒於聲波作用下之運動分析
相關論文
★ 雙頻帶微型電磁式發電機之研製★ 經驗模態分解法之清醒與麻醉情形下的腦波特徵判別
★ CMOS-MEMS電容式加速度計之設計與製作★ 銅電鍍製程於微小結構製作之應用
★ 平面雙軸式磁通閘之分析與應用★ 低頻振動能量擷取器之設計
★ 聲波聚焦噴墨搭配菲涅爾透鏡之設計★ 微粒子於溶液中操控之模擬
★ 應用希爾伯特黃轉換以C語言環境開發腦機介面訊號處理★ 平面雙軸式磁通閘之製作與改良
★ 單一自由度微型電熱鑷子之設計與分析★ 加工液濁度檢測器之設計
★ Underwater Position Control of Particles★ 立體微型振動發電機之研製
★ 三維導電微成型技術開發應用於微機電系統之研究★ 用於電火花加工的油質感測器
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文主要針對在聲波的作用下,微粒在水中被捕獲在節點區域之討論。藉由施加頻率為2.51MHz及電壓為6Vpp之訊號於壓電元件使其振動並產生聲波,將微粒捕獲在聲束軸上之節點區域內,並透過移動平台移動使微粒脫離節點區域。藉此分析實驗結果中微粒受到聲輻射力作用下,在不同移動速度下掉落時之阻力,進而搭配理論公式分析出作用在微粒上的聲輻射力大小並對其進行比較。
摘要(英) The discussion is focused on how the particles in the water are captured in the pressure node under the influence of sound waves. By applying a signal with 2.51 MHz and 6 Vpp to the piezoelectric element to vibrate and generate ultrasound in the water, the particle is captured in the pressure node on the sound beam axis, and it moved away from the pressure node through the mobile platform. Based on the experimental results, the particle dropped due to the drag force at different moving speeds. Finally, according to this measurement, the estimated acoustic radiation force on the particle is calculated.
關鍵字(中) ★ 超聲波
★ 聲輻射力
★ 微粒操控
關鍵字(英)
論文目次 摘要 i
Abstract ii
致謝 iii
圖目錄 vii
表目錄 x
一、緒論 1
1-1前言 1
1-2研究動機 1
1-3微粒操縱技術背景回顧 2
1-4聲波技術背景回顧 4
1-5聲學鑷子應用 11
1-6本文架構 11
二、基礎理論 12
2-1駐波理論 12
2-2聲場控制方程式 13
2-2-1狀態方程式 13
2-2-2連續性方程式 14
2-2-3動量方程式 14
2-2-4線性波動方程式 15
2-2-5聲輻射壓力 16
2-3聲場駐波理論 17
2-3-1聲輻射力 18
2-3-2側向輻射力 21
2-4斯托克斯黏滯阻力 21
2-5超聲波場中微粒運動的理論模型 22
三、實驗架構 25
3-1實驗流程 25
3-2聲阻抗匹配理論 27
3-3移動參數設計 28
3-4微粒及材料參數 30
四、實驗結果與討論 31
4-1實驗結果 31
4-1-1白色微粒 31
4-1-2粉色微粒 37
4-1-3兩種微粒結果比較 42
4-2微粒模型討論 44
4-2-1重力與浮力分析 46
4-2-2整個系統往下移動 47
4-2-3阻力分析 48
4-2-4實驗結果討論 49
五、結論與未來展望 51
5-1結論 51
5-2未來展望 51
參考文獻 52
參考文獻 [1] A. Ashkin, J. M. Dziedzic, J. Bjorkholm, and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Optics letters, vol. 11, no. 5, pp. 288-290, 1986.
[2] A. R. Bausch, W. Möller, and E. Sackmann, "Measurement of local viscoelasticity and forces in living cells by magnetic tweezers," Biophysical journal, vol. 76, no. 1 Pt 1, pp. 573-579, 1999.
[3] B. R. Lutz, J. Chen, and D. T. Schwartz, "Hydrodynamic tweezers: 1. Noncontact trapping of single cells using steady streaming microeddies," Analytical chemistry, vol. 78, no. 15, pp. 5429-5435, 2006.
[4] T. Otsuka, K. Higuchi, and K. Seya, "Consideration of sample dimension for ultrasonic levitation," IEEE Symposium on Ultrasonics, vol. 3, pp. 1271-1274, 1991.
[5] J. R. Wu, "Acoustical tweezers," The Journal of the Acoustical Society of America, vol. 89, no. 5, pp. 2140-3, 1991.
[6] T. Kozuka, T. Tuziuti, H. Mitome, and T. Fukuda, "Control of a standing wave field using a line-focused transducer for two-dimensional manipulation of particles," Japanese journal of applied physics, vol. 37, no. 5S, p. 2974, 1998.
[7] J. Shi, X. Mao, D. Ahmed, A. Colletti, and T. J. Huang, "Focusing microparticles in a microfluidic channel with standing surface acoustic waves (SSAW)," Lab on a Chip, vol. 8, no. 2, pp. 221-223, 2008.
[8] J. Lee, S.-Y. Teh, A. Lee, H. H. Kim, C. Lee, and K. K. Shung, "Single beam acoustic trapping," Applied Physics Letters, vol. 95, no. 7, 2009.
[9] A. Ozcelik et al., "Acoustic tweezers for the life sciences," Nature Methods, vol. 15, no. 12, pp. 1021-1028, 2018.
[10] D. Ahmed et al., "Rotational manipulation of single cells and organisms using acoustic waves," Nature Communications, vol. 7, no. 1, p. 11085, 2016.
[11] L. Kwok Ho, L. Ying, C. Lee, Q. Zhou, and K. K. Shung, "Ultrahigh frequency ultrasound microbeam for biomedical applications," IEEE International Ultrasonics Symposium, pp. 1994-1997, 2012.
[12] D. Hajdarovic, Suppression of acoustic streaming in liquids of inhomogeneous density and compressibility, Master’s thesis, Lund University, 2016.
[13] 白明憲,工程聲學,全華圖書,台北市,民國九十三年。
[14] H. Bruus, "Acoustofluidics 7: The acoustic radiation force on small particles," Lab on a Chip, vol. 12, no. 6, pp. 1014-1021, 2012.
[15] M. A. B. Andrade, N. Pérez, and J. C. Adamowski, "Review of Progress in Acoustic Levitation," Brazilian Journal of Physics, vol. 48, no. 2, pp. 190-213, 2018.
[16] M. Evander and T. Laurell, "Acoustic Trapping," in Encyclopedia of Nanotechnology, B. Bhushan, Ed. Dordrecht: Springer Netherlands, 2012.
[17] M. Groschl, "Ultrasonic separation of suspended particles--Part I: Fundamentals," 1998.
[18] L. V. King, "On the Acoustic Radiation Pressure on Spheres," Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, vol. 147, no. 861, pp. 212-240, 1934.
[19] K. Yosioka and Y. Kawasima, "Acoustic Radiation Pressure on a Compressible Sphere," Acta Acustica united with Acustica, vol. 5, 1955.
[20] L. P. Gor′kov, "On the Forces Acting on a Small Particle in an Acoustical Field in an Ideal Fluid," Soviet Physics Doklady, vol. 6, p. 773, 1962.
[21] T. Laurell, F. Petersson, and A. Nilsson, "Chip integrated strategies for acoustic separation and manipulation of cells and particles," Chem Soc Rev, vol. 36, no. 3, pp. 492-506, 2007.
[22] G. K. Batchelor, An Introduction to Fluid Dynamics (Cambridge Mathematical Library). Cambridge: Cambridge University Press, 2000.
[23] 白晓清、赫冀成和何北星,「超声波作用下声学参数对悬浮液中微粒凝聚的影响」,2001。
[24] A. Hirose and K. E. Lonngren, Introduction to Wave Phenomena. R.E. Krieger Publishing Company, 1991.
指導教授 陳世叡 審核日期 2020-7-16
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明