博碩士論文 106323065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:80 、訪客IP:3.133.79.70
姓名 邱景棟(Ching-Tung Chiou)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 低溫三維列印之溫度調節演算法用於提升沉積面之垂直溫度均勻性
(Thermoregulation Algorithm for Increasing Vertical Temperature Uniformity of Deposition Surface in Low Temperature 3D Printing Technology)
相關論文
★ 雙光子光致聚合微製造系統之研發★ 雙光子光致聚合五軸微製造系統之雷射加工路徑生成研究
★ 椎弓根螺釘定位演算法及導引夾治具自動化設計流程開發★ 雙光子聚合微製造技術以能量均勻橢圓體為基之曝光時間最佳化研究
★ 雙光子光致聚合微製造以弦高誤差為基之切層演算法★ 雙光子光致聚合微製造技術以螺旋線雷射掃描路徑增強微結構強度研究
★ 雙光子聚合微製造技術之三維結構 製造品質改進研究★ 利用二維多重圖像建構三維三角網格模型的生成與品質改進
★ 組織工程用冷凍成型製造系統 之自動化製作流程開發★ 自動相機校正與二維影像輪廓萃取研究
★ 基於雙光子光致聚合技術之四軸微製造系統製作高深寬比結構之研究★ 冷凍成型積層製造之機台設計與組織工程支架製作參數調校研究
★ 基於二維影像輪廓重建三維模型技術之多視角相機群組空間座標系統整合★ 應用於大型物體三維模型重建之多重二維校正板相機校正流程開發
★ 組織工程用冷凍成型積層製造之固態水支撐結構生成研究★ 聚醚醚酮之積層製造系統開發
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 組織工程為器官和組織的移植提供了替代的方案,隨著積層製造技術的引入,提升了多孔性且外形結構複雜之支架列印的可能性,而本研究選用低溫3D列印技術製作殼聚醣支架。然而,低溫3D列印的沉積面會隨著支架列印高度的增加,與工作平台的距離遠來越遠,導致熱傳導效率降低造成沉積面垂直溫度分布增加。本研究將推導一套能改善沉積面垂直溫度分布的溫控演算法並提升高層數低溫3D列印支架的品質。
本研究改良冷凍循環機的控制模式,將冷凍循環機的外部傳感器安裝於循環塊入口,固定控制點與工作平台間的距離,以便找出感測器間的溫度關係。利用PLA支架分析沉積面溫度與沉積面上方空氣溫度並找出影響材料凝固的關鍵因子為支架沉積面溫度。本研究透過調降冷凍循環機內部循環液溫度來改善沉積面垂直溫度分布,因此測試冷凍循環機最大冷卻效率與計算支架列印時間。最後推導出一套演算法能將列印支架的過程分成數個階段,並計算出每個階段所需列印的層數,同時計算出冷卻循環機啟動的時機。目的在每個階段列印完成後,循環塊入口溫度也能幾乎同時到達冷卻溫度並改善支架沉積面溫度,進而提升殼聚醣支架列印的高度和品質。
最後,由於先前研究使用的殼聚醣材料較難列印高層數支架,為了驗證沉積面垂直溫度分布的改善,利用推導出之溫控演算法製作大尺寸且高層數的殼聚醣支架,並分析凍乾完成後的殼聚醣支架最上層的股線寬度。
摘要(英) Tissue engineering provides an alternative solution for organ and tissue transplantation. With the introduction of layered manufacturing technology, the possibility of printing porous and complex scaffolds has been improved. In this study, low-temperature 3D printing technology was used to make chitosan scaffold. However, the deposition surface of the low-temperature 3D printing will increase with the printing height of the scaffold, and the distance from the working platform will be farther and farther, resulting in a decrease in the heat transfer efficiency and an increase in the vertical temperature distribution of the deposition surface. This study will derive a temperature control algorithms that can improve the vertical temperature distribution of the deposition surface and improve the quality of high-temperature low-temperature 3D printing supports.
In this study, the control mode of the refrigerated circulators is improved. The external sensor of the refrigerated circulators is installed at the entrance of the coolant enclosure, and the distance between the control point and the working platform is fixed, so as to find out the temperature relationship between the sensors. The PLA scaffold is used to analyze the temperature of the deposition surface and the air temperature above the deposition surface and find out that the key factor affecting the solidification of the material is the temperature of the deposition surface of the scaffold. In this study, the vertical temperature distribution of the deposition surface was improved by reducing the temperature of the circulating fluid in the refrigerated circulators. Therefore, the maximum cooling efficiency of the refrigerated circulators was tested and the printing time of the scaffold was calculated. Finally, a set of algorithms can be derived to divide the process of printing the support into several stages, and calculate the number of layers to be printed in each stage, and at the same time calculate the timing of the start of the refrigerated circulators. Purpose is the inlet temperature of the coolant enclosure can also reach the cooling temperature almost at the same time after the printing in each stage is completed, and improve the temperature of the deposition surface of the scaffold, thereby improving the height and quality of the printing of the chitosan scaffold.
Finally, because the chitosan material used in previous studies is difficult to print high-level scaffold, in order to verify the improvement of the vertical temperature distribution on the deposition surface, a large-size and high-level chitosan scaffold was fabricated using the derived temperature control algorithm. The uppermost strand width of the chitosan scaffold after lyophilization was analyzed.
關鍵字(中) ★ 組織工程
★ 積層製造
★ 殼聚醣
★ 溫度控制
關鍵字(英) ★ Tissue Engineering
★ Additive Manufacturing
★ Chitosan
★ Temperature Control
論文目次 摘要 I
ABSTRACT II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 IX
第一章、 緒論 1
1-1 前言 1
1-2 文獻回顧 1
1-3 研究動機與目的 11
1-4 論文架構 12
第二章、 研究與理論說明 13
2-1 組織工程簡介 13
2-2 組織工程用之積層製造技術介紹 15
2-3 組織工程支架材料特性 18
2-4 低溫3D列印機台簡介 21
2-5 先前低溫3D列印機台之沉積面溫度分布 25
第三章、 研究方法 27
3-1 支架材料製備 27
3-2 聚乳酸支架設計 28
3-3 冷卻溫度測量方法 29
3-4 冷卻循環機控制模式與最大冷卻效率測量 31
3-5 列印長度與時間計算 36
3-6 低溫3D列印之流程 43
第四章、 實驗結果與討論 48
4-1 聚乳酸支架上方空氣溫度分布 48
4-2 聚乳酸支架沉積面溫度分布 53
4-3 實際列印時間與計算值比較 59
4-4 溫控對於聚乳酸支架之沉積面溫度分布 62
4-5 大尺寸高層數支架製作 64
4-6 溫控對於支架結構分析 65
第五章、 結論與未來展望 68
5-1 結論 68
5-2 未來展望 69
參考文獻 70
參考文獻 [1] 张涤生,「組織工程學簡介」,民國87年。
[2] A. Khademhosseini, and R. Langer, “A Decade of Progress in Tissue Engineering”, Nature Protocols, Vol. 11, pp. 1775-1781, 2016.
[3] P. M. Sokolsky, K. Agashi, A. Olaye, Andrew, K. M. Shakesheff and A. J. Domb, “Polymer Carriers for Drug Delivery and Tissue Engineering”, Advanced Drug Delivery Reviews, Vol. 59, pp. 187-206, 2007.
[4] Z. Xiong, Y. Yan, S. Wang, R. Zhang and C. Zhang, “Fabrication of Porous Scaffolds for Bone Tissue Engineering via Low-Temperature Deposition”, Scripta Materialia, Vol. 46, pp. 771-776, 2002.
[5] L. Liu, Z. Xiong, Y. Yan, R. Zhang, X. Wang and L. Jin, “Multi-nozzle Low-Temperature Deposition System for Construction of Gradient Tissue Engineering Scaffolds”, Construction of Gradient Tissue Engineering Scaffolds, Vol. 88, pp. 254-263, 2008.
[6] G. H. Kim, S. H. Ahn, H. Yoon, Y. Y. Kim and W. Chun, “A Cryogenic Direct-Plotting System for Fabrication of 3D Collagen Scaffolds for Tissue Engineering” Journal of Materials Chemistry, Vol. 19, pp. 8817-8823, 2019.
[7] C. Y. Liao, W. J. Wu, C. T. Hsieh, C. S. Tseng, N. T. Dai, and S. H. Hsu, “Design and Development of a Novel Frozen-Form Additive Manufacturing System for Tissue Engineering Applications”, 3D Printing and Additive Manufacturing, Vol. 3, pp. 216-225, 2016.
[8] L. Geng, W. Feng, D. W. Hutmacher, Y. S. Wong, H. T. Loh and J. Y. H. Fuh, “Direct Writing of Chitosan Scaffolds Using a Robotic System”, Rapid Prototyping Journal, Vol. 11, pp. 90-97, 2005.
[9] L. Qian, A. Ahmed, L. Glennon-Alty, Y. Yang, P. Murray and H. Zhang, “Patterned Substrates Fabricated by a Controlled Freezing Approach and Biocompatibility Evaluation by Stem Cells”, Materials Science and Engineering C, Vol. 49, pp. 390-399, 2015.
[10] C. Colosi, M. Costantini, R. Latini, S. Ciccarelli, A. Stampella, A. Barbetta, M. Massimi, L. C. Devirgiliis and M. Dentini, “Rapid Prototyping of Chitosan-Coated Alginate Scaffolds Through the Use of a 3D Fiber Deposition Technique” Journal of Materials Chemistry B, Vol. 2, pp.6779-6791, 2014.
[11] X. F. Zheng, W. J. Zhai, Y. C. Liang and T. Sun, “Fabrication of Chitosan-Nanohydroxyapatite Scaffolds via Low-Temperature Deposition Manufacturing”, Journal of Inorganic Materials, Vol. 26, pp. 12-16, 2011.
[12] H. Lee and G. H. Kim, “Cryogenically Fabricated Three-Dimensional Chitosan Scaffolds with Pore Size-Controlled Structures for Biomedical Applications”, Carbohydrate Polymers, Vol. 85, pp. 817-823, 2011.
[13] Q. Wu, M. Maire, S. Lerouge, D. Therriault and M. C. Heuzey, “3D Printing of Microstructured and Stretchable Chitosan Hydrogel for Guided Cell Growth”, Advance Biosystem, Vol. 1, 2017.
[14] Q. Wu, D. Therriault and M. C. Heuzey, “Processing and Properties of Chitosan Inks for 3D Printing of Hydrogel Microstructures”, ACS Biomaterials Science & Engineering, Vol. 4, pp. 2643-2652, 2018.
[15] L. G. Griffith and G. Naughton, “Tissue Engineering—Current Challenges and Expanding Opportunities”, Science, Vol. 295, pp.1009-1014, 2002.
[16] C. A. Vacanti, “The History of Tissue Engineering”, J. Cell. Mol. Med., Vol. 10, pp. 569-576, 2006.
[17] C. Chung and J. A. Burdick, “Engineering Cartilage Tissue”, Advanced Drug Delivery Reviews, Vol. 60, pp. 243-262, 2008.
[18] C. Mota, D. Pupp, F. Chiellini and E. Chiellini, “Additive Manufacturing Techniques for The Production of Tissue Engineering Constructs”, Tissue Engineering and Regenerative Medicine, Vol. 9, pp. 174-190, 2015.
[19] S. A. Skoog, P. L. Goering and R. J. Narayan, “Stereo-lithography in Tissue Engineering”, Material Science: Material in Medicine, Vol. 25, pp. 845-856, 2014.
[20] T. Matsuda, M. Mizutani and S. C. Arnold, “Molecular Design of Photocurable Liquid Biodegradable Copolymers. 1. Synthesis and Photocuring Characteristics”, Macromolecules, Vol. 33, pp. 795-800.
[21] A. Mazzoli, “Selective Laser Sintering in Biomedical Engineering”, Medical & Biological Engineering & Computing, Vol. 51, pp. 245-256, 2013.
[22] K. S. Boparai, R. Singh and H. Singh, “Development of Rapid Tooling Using Fused Deposition Modelling: A Review”, Rapid Prototyping, Vol. 22, pp. 1355-2546, 2016.
[23] R. C. Thomson, M. C. Wake, M. J. Yaszemski and A. G. Mikos, “Biodegradable Polymer Scaffolds to Regenerate Organs”, Advances in Polymer Science, Vol. 122, pp. 245-274, 1995.
[24] W. H. Wong and D. J. Mooney, “Synthesis and Properties of Biodegradable Polymers Used as Synthetic Matrices for Tissue Engineering”, Synthetic Biodegradable Polymer Scaffolds, pp. 51-82, 1997.
[25] K. Y. Lee and D. J. Mooney, “Hydrogels for Tissue Engineering”, Chemical Reviews, Vol. 101, pp. 1869-1880, 2001.
[26] J. E. Babensee, L. V. McIntire and A. G. Mikos, “Growth Factor Delivery for Tissue Engineering”, Pharmaceutical Research, Vol. 17, pp. 497-504, 2000.
[27] J. E. Babensee, J. M. Anderson, L. V. McIntire and A. G. Mikos, “Host Response to Tissue Engineered Devices”, Advances Drug Delivery Reviews, Vol. 33, pp. 111-139, 1998.
[28] B. Řı́hová, “Immunocompatibility and biocompatibility of cell delivery systems”, Advances Drug Delivery Reviews, Vol. 42, pp. 65-80, 2000.
[29] 楊泓璟,「以冷凍成型積層製造及固態水支撐製程製作水性生物可降解型聚胺酯與殼聚醣支架之實驗與分析」,國立中央大學,碩士論文,民國106年。
[30] J. K. F. Suh and H. W. T. Matthew, “Application of Chitosan-Based Polysaccharide Biomaterials in Cartilage Tissue Engineering: A Review”, Biomaterials, Vol. 21, pp. 89-98, 2000.
[31] S. V. Madihally and H. W. T. Matthew, “Porous Chitosan Scaffolds for Tissue Engineering”, Biomaterials, Vol. 20, pp. 1133-1142, 1999.
[32] 洪承暉,「使用微型閥並具備自動平台校正功能之三維生物列印機開發」,國立中央大學,碩士論文,民國107年。
[33] 李垣勳,「幾丁聚醣之溶解特性及溶解處理對其性質之影響」,國立中興大學,碩士論文,民國105年。
[34] E. Khor and L. Y. Lim, “Implantable Applications of Chitin and Chitosan”, Biomaterials, Vol. 24, pp. 39-49, 2003.
[35] 高嘉,「壳聚糖在组织工程支架材料中的应用进展」,中國美容醫學,第三期,pp. 155-157,2018年。
[36] A. Di Martino, M. Sittinger and M. V. Risbud, “Chitosan: A Versatile Biopolymer for Orthopaedic Tissue-Engineering”, Biomaterials, Vol. 26, pp. 5983-5990, 2005.
指導教授 廖昭仰(Chao-Yaug Liao) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明