博碩士論文 107323020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:83 、訪客IP:3.137.161.222
姓名 蔡宗鳴(Tsung-Ming Tsai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於蝸桿創成磨齒加工之齒面磨削紋理模擬及控制方法
(Machining simulation and Control Method of Ground Texture on Gear Tooth Surface Based on Continuous Generating Gear Grinding)
相關論文
★ 應用調諧顆粒阻尼器於迴轉式壓縮機振動抑制之研究★ 應用離散元素法與多體動力學於齒輪傳動系統動力分析模型之建立
★ 不同氣體負載下雙螺桿壓縮機動力響應及振動頻譜特徵之預測★ 新型魯氏真空泵轉子齒形之參數化設計及性能評估
★ 以CNC內珩齒機進行螺旋齒輪齒面拓樸修整之研究★ 雙螺桿壓縮機變導程轉子齒間法向間隙之數值計算方法及其三維幾何模型驗證
★ 不同工作條件下冷媒雙螺桿壓縮機之轉子受力分析及動載響應預測★ 應用多體動力學及離散元素法於具阻尼顆粒齒輪及軸承系統抑振之研究
★ 具齒廓修形內嚙合非圓形齒輪創成之方法建立與其傳動誤差分析★ 雙螺桿壓縮機於CFD仿真模擬之三維幾何簡化方法建立
★ 航空發動機齒輪箱傳動系統之強度分析與改善★ 電動車差速齒輪傳動系統之動載分析與性能評估
★ 指狀銑刀安裝偏差對真空泵螺桿轉子加工精度影響之研究★ 以CNC內珩齒機加工具鼓形之錐狀齒輪之研究
★ 應用阻尼顆粒於旋轉機械之振動抑制及動平衡設計★ 考量氣體負載下迴轉式壓縮機動態負載分析模型之建立
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-27以後開放)
摘要(中) 標準蝸桿砂輪創成磨齒(generating gear grinding)運動多產生沿齒長方向、相互平行之磨紋,相較於經珩齒(gear honing)後之交錯、亂序齒面磨紋,已被證實不利於降低齒輪之嚙合噪音;而國外創成磨齒機已具備磨削無規律磨紋之技術,然基於商業考量未公開揭露,若可掌握此技術將有助於提升國內機台及加工齒輪之附加價值。本研究建立真實具磨粒之蝸桿砂輪模型、依據實際蝸桿砂輪磨齒機之多軸同動,建立數值方法模擬出具有磨削紋理之齒面,並有系統地分析幾何參數與機台運動參數對齒面磨紋及齒面粗糙度之影響,研究結果表明,齒面粗糙度隨齒輪軸向進給速度上升而增加、齒面上不同位置之磨紋具有相似性,磨料粒徑愈大則齒面粗糙度愈大、齒輪螺旋角與砂輪半徑對齒面粗糙度影響較不明顯。此外,提出四種不同波形之附加運動以控制齒面磨紋。範例中,標準機台運動之模擬齒面紋理為直條狀、具附加運動之模擬齒面紋理具有亂序交叉紋,且最大磨紋深度改善10 %,並與真實齒面量測結果趨勢一致,本文建立技術將可提升國內磨齒機附加價值,改善加工齒輪之傳動品質,為日後磨紋研究提供理論依據。
摘要(英) Traditional machining method of a CNC generating gear grinding machine usually generates regularly-parallel grinding texture (RPGT) on gear tooth surface, which is disadvantageous to gear meshing noise comparing to irregularly-staggered grinding texture (ISGT). The technology to form ISGT is commercially confidential so far. In this study, a grinding wheel with abrasive particles is numerically constructed by programming to perform grinding simulations and generate grinding marks based on a multi-axis CNC generating grinding machine. Surface roughness of the finished gear is also estimated. As simulated results show, the surface roughness increases as the axial feed velocity of gear increases, microstructure of the grinding texture is similar at different positions on a gear surface, the surface roughness is improved with the smaller abrasive grit size, and the surface roughness is insensitive to the helical angle of gear and the diameter of grinding wheel. In addition, four types of oscillating waves are added on the axial feed of gear to adjust the grinding textures. It is proven that the ISGT can be obtained by applying the additional motions and the maximum grinding depth is reduced by 10%. This result is consistent with the practical results published by a well-known manufacturer, Reishauer.
關鍵字(中) ★ 蝸桿砂輪
★ 創成磨齒
★ 磨紋
★ 磨齒機
★ 表面粗糙度
關鍵字(英) ★ Cylindrical Gear
★ Grinding Wheel
★ Generating Grinding
★ Grinding Texture
★ Surface Roughness
論文目次 摘要 i
ABSTRACT ii
謝誌 iii
圖目錄 vi
表目錄 vii
參數符號表 viii
第1章 緒論 1
1-1 前言 1
1-2 研究目的 2
1-3 文獻回顧 2
1-4 論文架構 5
第2章 創成磨齒之數學模型建立 6
2-1 蝸桿砂輪之創成 6
2-2 工件齒輪之創成 8
2-3 CNC磨齒機加工座標系統 10
2-4 總結 12
第3章 齒面磨紋模擬 13
3-1 簡介 13
3-2 真實砂輪模型建立 14
3-3 齒面磨削紋理計算方法 15
3-4 磨削附加運動 19
3-5 總結 21
第4章 數值計算範例 22
4-1 齒面磨紋控制 22
4-2 不同磨削位置對齒面磨紋之影響 25
4-3 軸向進給速度對齒面磨紋之影響 27
4-4 齒輪螺旋角對齒面磨紋之影響 28
4-5 附加運動對齒面磨紋之影響 29
第5章 總結與未來展望 35
5-1 總結 35
5-2 未來展望 36
參考文獻 37
附錄一 40
附錄二 41
控制參數與齒面粗糙度之關係 41
作者簡介 45
科研成果 46
參考文獻 [1] 陳宛伶、張燦勳、林群凱,2017,「高精度齒輪創新製造系統應用」,機械新刊,第12期,第24-33頁。
[2] 籃貫銘,2018,「電動車傳動系統的技術關鍵與趨勢」,智動化SmartAuto,第37期,第16-19頁。
[3] Mikoleizig, G., “Surface roughness measurements of cylindrical gears and bevel gears on gear inspection machines,” Gear technology, Vol. 32, pp. 48-55, 2015.
[4] Darafon, A., “Measuring and modelling of grinding wheel topography,” Ph.D. Dalhousie University, Halifax, 2013.
[5] Brecher, C., Klocke, F., Löpenhaus, C., and Hübner, F., “Analysis of abrasive grit cutting for generating gear grinding,” Procedia CIRP, Vol. 62, pp. 299-304, 2017.
[6] Türich, A., “Producing profile and lead modifications in threaded wheel and profile grinding,” Gear Technology, Vol. 27, No. 1, pp. 54-62, 2010.
[7] Wang, H., Deng, X., Han, J., Li, J., and Yang, J., “Mathematical model of helical gear topography measurements and tooth flank errors separation,” Mathematical Problems in Engineering, Vol. 2015, No. 176237, pp. 10, 2015.
[8] Chen, H. F., Tang, J. Y., and Zhu, C., “A new approach to modeling the surface topography in grinding considering ploughing action,” Machining Science and Technology, Vol. 22, No. 4, pp. 604-620, 2018.
[9] Kimme, S., Bauer, R., Drossel, W. G., and Putz, M., “Simulation of error-prone continuous generating production processes of helical gears and the influence on the vibration excitation in gear mesh,” Procedia CIRP, Vol. 62, pp. 256-261, 2017.
[10] Wang, Y., Liu, Y., Chu, X., He, Y., and Zhang, W., “Calculation model for surface roughness of face gears by disc wheel grinding,” International Journal of Machine Tools and Manufacture, Vol. 123, pp. 76-88, 2017.
[11] Ono, K., Kawamura, M., Kitano, M., and Shimamuni, T., Cutting theories, National Defense Industry Press, 1985.
[12] Wang, T., Liu, H., Wu, C., Cheng, J., and Chen, M., “Three-dimensional modeling and theoretical investigation of grinding marks on the surface in small ball-end diamond wheel grinding,” International Journal of Mechanical Sciences, Vol. 173, No. 105467, 2020.
[13] Litvin, F. L., and Fuentes, A. F., Gear Geometry and Applied Theory, Cambridge University Press, 2nd Edition, 2004.
[14] Wang, X., Yu, T., Dai, Y., Shi, Y., and Wang, W., “Kinematics modeling and simulating of grinding surface topography considering machining parameters and vibration characteristics,” The International Journal of Advanced Manufacturing Technology, Vol. 87, pp. 2459-2470, 2016.
[15] Reishauer, G1-144 RZ400 Gear Grinding Machines Operation Manual.
[16] Reishauer, Grinding Wheel Technical Manual.
[17] Reishauer, Generating Gear Grinding Technology Manual.
[18] Ming, X. Z., Gao, Q., Yan, H. Z., Liu, J. H., and Liao, C. J., “Mathematical modeling and machining parameter optimization for the surface roughness of face gear grinding,” The International Journal of Advanced Manufacturing Technology, Vol. 90, No. 9-12, pp. 2453-2460, 2017.
[19] Chen, M., Liu, G., Dang, J., Li, C., and Ming, W., “Effects of tool helix angles on machined surface morphology in tilt side milling of cantilever thin-walled plates,” Procedia CIRP, Vol. 71, pp. 93-98, 2018.
[20] Poggio, T., and Girosi, F., “Networks for approximation and learning,” Proceedings of the IEEE, Vol. 78, no. 9, pp. 1481–1497, 1990.
[21] Buhmann, M. D., Radial Basis Functions: Theory and Implementations, Cambridge University Press, Vol. 12, 2003.
[22] Wu, Y., Wang, H., Zhang, B., and Du, K. L., “Using radial basis function networks for function approximation and classification,” ISRN Applied Mathematics, Vol. 2012, pp. 34, 2012.
指導教授 吳育仁(Yu-Ren Wu) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明