博碩士論文 107323040 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:105 、訪客IP:18.221.222.47
姓名 盧業昕(Yeh-Hsin Lu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 具仿生微奈米結構之壓電靜電混能式自供電感測器與人體生物力學監測裝置
(Self-Powered hybrid multifunctional sensor with biomimetic micro/nano-textured structure for human biomechanical monitoring device)
相關論文
★ 塑膠機殼內部表面處理對電磁波干擾防護研究★ 研磨頭氣壓分配在化學機械研磨晶圓膜厚移除製程上之影響
★ 利用光導效應改善非接觸式電容位移感測器測厚儀之研究★ 石墨材料時變劣化微結構分析
★ 半導體黃光製程中六甲基二矽氮烷 之數量對顯影後圖型之影響★ 可程式控制器機構設計之流程研究
★ 伺服沖床運動曲線與金屬板材成型關聯性分析★ 鋁合金7003與630不銹鋼異質金屬雷射銲接研究
★ 應用銲針尺寸與線徑之推算進行銲線製程第二銲點參數優化與統一之研究★ 複合式類神經網路預測貨櫃船主機油耗
★ 熱力微照射製作絕緣層矽晶材料之研究★ 微波活化對被植入於矽中之氫離子之研究
★ 矽/石英晶圓鍵合之研究★ 奈米尺度薄膜轉移技術
★ 光能切離矽薄膜之研究★ 氮矽基鍵合之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-2以後開放)
摘要(中) 本論文利用壓電材料PZT-5A( lead zirconate titanate piezoelectric ceramics)製成的壓電片和PVDF壓電薄膜作為壓電發電機,分別與靜電奈米發電機( Nanogenerator,NG)結合製成出壓電靜電混能自供電形變感測器(Self-Powered Multifunctional Sensor,SPMS),並進行一系列的訊號量測和應用,其一研究為將壓電陶瓷材料PZT-5A,外部包覆著不鏽鋼外殼的壓電發電執行器與之字形摺紙結構之靜電發電器結合,並在靜電感應器上產生不同的微結構,改良其輸出和電源供應,產生穩定高輸出的混能式感應器,用於醫用輔具感測和智慧輔具研發,將穿著醫用腳部輔具產出的不同訊號做訊號分析以及動作感測,再利用機器學習長短期記憶(Long Short Term Memory,LSTM)演算法來分辨不同的動作以進行數據學習作為動態辨識的指標,其二為採用PVDF壓電薄膜感測器結合具有之靜電發電器製作出發電感應機以用於收集風能的可能性。使用3D列印機製造出一個風管將混能式發電感應器製入其中收集風能,期望能做出壓電靜電混能式風力發電器,以節約能源收集風能產生穩定的些許供電,未來在自供電發電器具中作為可供電式風能發電集能器有很好的發展潛力。
摘要(英) In this paper, piezoelectric device made of piezoelectric material PZT-5A (lead zirconate titanate piezoelectric ceramics) and PVDF (polyvinylidene difluoride) piezoelectric films are used as piezoelectric generators, which are combined with triboelectric Nanogenerators (NG) to produce Self-Powered Multifunctional Sensor (SPMS), with a series of signal measurement and application. One of the research is the piezoelectric ceramic material PZT-5A cover with stainless steel piezoelectric generator. The power generation actuator is combined with the triboelectric nano-generator of the zigzag origami structure, there are different microstructures on the static triboelectric sensor, improving its output and power supply ability, generate a stable and high output hybrid sensor for medical leg aid Measurement. Using different signals produced by wearing medical leg aids for signal analysis and motion sensing, and then using machine learning Long Short Term Memory (LSTM) algorithm to distinguish different actions for data learning as dynamic identification. The second indicator is the possibility of using PVDF piezoelectric film sensor combined with piezoelectric film to make a power generation sensor for collecting wind energy. It is manufactured using a 3D printer produce wind pipe incorporates a hybrid energy generation sensor into it to collect wind energy. It is expected to be used as a self-powered nozzle witch can save wind energy and sensing different wind signal. Collecting wind energy produces give a stable supply of electricity. The sensor has good development potential in the future.
關鍵字(中) ★ 奈米發電機
★ 混能式自供電感測器
★ 機器學習長短期記憶
★ 仿生表面微結構
關鍵字(英)
論文目次 摘要…………………………………………………………………………vi
Abstract……………………………………………………………………viii
致謝…………………………………………………………………………x
圖目錄……………………………………………………………………xiii
第一章 緒論………………………………………………………………1
1-1 前言………………………………………………………………1
1-2 研究動機與方法…………………………………………………1
1-3 論文架構…………………………………………………………3
第二章 文獻回顧……………………………………………………………4
2-1 奈米發電機與混能式自供電感測器應用………………………4
2-2 壓電效應…………………………………………………………6
第三章 壓電靜電製作混能式自供電感測器在醫用復健輔具感測應用…7
3-1 導論………………………………………………………………7
3-2 實驗………………………………………………………………7
3-2-1 實驗樣品…………………………………………………7
3-2-2 量測設備架構……………………………………………9
3-3結果與討論………………………………………………………12
第四章 壓電靜電混能式風力發電器與應用………………………………27
4-1 導論……………………………………………………………27
4-2 實驗……………………………………………………………27
4-2-1 實驗材料………………………………………………27
4-2-2 壓電靜電混能式風力發電器架構……………………29
4-3 結果與討論……………………………………………………31
第五章 結論………………………………………………………………42
參考文獻 …………………………………………………………………44
實驗儀器 …………………………………………………………………48

參考文獻 [1] T. C. Hou, Y. Yang, H. Zhang, J. Chen, L. J. Chen, Z. L. Wang. Triboelectric nanogenerator built inside shoe insole for harvesting walking energy. Nano Energy 2211-2855 (2013)
[2] Y. K. Fuh, B. S. Wang, C. Y. Tsai, Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array. Scientific Reports 6759 (2017)
[3] F. L. Zhou, R. H. Gong,I. Porat, J. Mater. Homogeneous Field Intensity Control During Multi-Needle Electrospinning via Finite Element Analysis and Simulation. Sci., 2009, 44, 5501
[4] S. Roundy, P. Wright, A piezoelectric vibration based generator
for wireless electronicsSmart Mater. Struct. 13 (2004) 1131–1142
[5] H. Kim, S. Priya, H. Stephanou, K. Uchino, IEEE Trans. Ultrason. Ferroelectr. Freq. Control.,2008, 4, 1851.
[6] S. Priya, Modeling of electric energy harvesting using piezoelectric windmill, Appl. Phys. Lett., 2005,87, 184101.
[7] G. Zhu, R. Yang, S. Wang, Z. L. Wang, Flexible High-Output Nanogenerator Based on Lateral ZnO Nanowire Array, Nano Lett., 2010, 10, 3151.
[8] J. Chen, G. Zhu, J. Yang, Q. Jing, P. Bai, W. Yang, X. Qi, Y. Su, Z. L. Wang, Personalized Keystroke Dynamics for Self-Powered Human–Machine Interfacing, ACS Nano, 2015, 9, 105-116.
[9] X. Pu, H. Guo, J. Chen, X. Wang, Y. Xi, C. Hu, Z. L. Wang, Eye motion triggered self-powered mechnosensational communication system using triboelectric nanogenerator , Sci. Adv., 2017, 3, e1700694.
[10] Y. C. Lai, et al., Single-Thread-Based Wearable and Highly Stretchable Triboelectric Nanogenerators and Their Applications in Cloth-Based Self-Powered Human-Interactive and Biomedical Sensing, Adv. Funct. Mater., 2017, 27, 1, 1604462.
[11] S. W. Chen, et al., An Ultrathin Flexible Single‐Electrode Triboelectric‐Nanogenerator for Mechanical Energy Harvesting and Instantaneous Force Sensing, Adv. Energy Mater., 2017, 7, 1, 1601255.
[12] Zhong Lin Wang, Triboelectric Nanogenerator (TENG)—Sparking an Energy and Sensor Revolution ,Adv. Energy Mater. 2020, 2000137
[13] X. Liang, T. Jiang, G. Liu, Y. Feng, C. Zhang, Z. L. Wang. Spherical triboelectric nanogenerator integrated with power management module for harvesting multidirectional water wave energy. Energy Environ. Sci., 2020, 13, 277—285
[14] Z. L. Wang, T. Jiang, L. Xu. Toward the blue energy dream by triboelectric nanogenerator networks Nano Energy 39 (2017) 9–23
[15] M. Xu, T. Zhao, C. Wang, S. L. Zhang, Z. Li, X. Pan, Z. L. Wang. High Power Density Tower-like Triboelectric Nanogenerator for Harvesting Arbitrary Directional Water Wave Energy. ACS Nano 2019, 13, 2, 1932-1939
[16] G. Liu, H. Guo, S. Xu, C. Hu, Z. L. Wang. Oblate Spheroidal Triboelectric Nanogenerator for All-Weather Blue Energy Harvesting. Adv. Energy Mater. 2019, 1900801
[17] J. An, Z. M.Wang, T. Jiang, X. Liang, Z. L. Wang. Whirling-Folded Triboelectric Nanogenerator with High Average Power for Water Wave Energy Harvesting. Adv. Funct. Mater. 2019, 1904867.
[18] G. Yao, L. Xu, X. Cheng, Y. Li, X. Huang, W. Guo, S. Liu, Z. L. Wang. Bioinspired Triboelectric Nanogenerators as Self-Powered Electronic Skin for Robotic Tactile Sensing. Adv. Funct. Mater. 2019, 1907312
[19] H. Wang, D. Li, W. Zhong, L. Xu, T. Jiang, Z. L. Wang. Self-Powered Inhomogeneous Strain Sensor Enabled Joint Motion and Three-Dimensional Muscle Sensing. ACS Appl. Mater. Interfaces 2019, 11, 37, 34251-34257
[20] Y. Chen, Y. C. Wang, Y. Zhang, H. Zou, Z. Lin, G. Zhang, C. Zou, Z. L. Wang. Elastic-Beam Triboelectric Nanogenerator for HighPerformance Multifunctional Applications: Sensitive Scale, Acceleration/Force/Vibration Sensor, and Intelligent Keyboard. Adv. Energy Mater. 2018, 1802159
[21] F. Gers, N. Schraudolph, and J. Schmidhuber, Learning Precise Timing with LSTM Recurrent Networks. Journal of Machine Learning Research, vol. 3, pp. 115–143, 2002.
[22] P. Molchanov, S. Gupta, K. Kim, J. Kautz, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2015, Page(s): 1 – 7
[23] Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 2015, 521, 436-444.
[24] G. Q. Zhao, G. H. Zhang, Q. Q. Ge, X. Y. Liu, PHM Conf. Research advances in fault diagnosis and prognostic based on deep learning, Chengdu, China, October 2016.
[25] E. Tsironi, P. Barros , S. Wermter , Gesture recognition with a convolutional long short-term memory recurrent neural network, in: Proceedings of the TwentyFourth European Symposium on Artifical Neural Networks, Computational Intelligence and Machine Learning, 2016, pp. 213–218 .
[26] M. Xu, Y. C. Wang, S. L. Zhang, W. Ding, J. Cheng, X. He, P. Zhang, Z. Wang, X. Pan, Z. L. Wang. An aeroelastic flutter based triboelectric nanogenerator as a self-powered active wind speed sensor in harsh environment. Extreme Mechanics Letters 15 (2017) 122–129 (2017)
[27] Y. K. Fuh, Z. M. Huang, B. S. Wang, S. C. Li. Powered Active Sensor with Concentric Topography of Piezoelectric Fibers. Nanoscale Research Letter. 12:44 (2017)
[28] Y. K. Fuh, S. C. Li, C. Y. Chen. Piezoelectrically and triboelectrically hybridized self-powered sensor with applications to smart window and human motion detection. APL MATERIALS 5, 074202 (2017)
[29] Y. K. Fuh, B, S, Wang, C. Y. Tsai, Self-Powered Pressure Sensor with fully encapsulated 3D printed wavy substrate and highly-aligned piezoelectric fibers array, Scientific Report, 6759 (2017)
[30] Y. K. Fuh, S. Ch. Li, Ch. Y. Chen, Ch. Y. Tsai. A fully packaged self-powered sensor based on near-field electrospun arrays of poly (vinylidene fluoride) nano/micro fibers. eXPRESS Polymer Letters Vol.12, No.2 (2018) 136–145
[31] Y.K. Fuh, T. H, Lee, C. Y. Chen, C. Y. Tsai, Near-Field Electrospun Piezoelectric Fibers as Sound-Sensing Elements. Polymers 2018, 10, 692
[32] Y. K.Fuh, C. Y. Chen, C. Y. Tsai, M. H. Xu, C. T. Wu, C. Y. Huang, T, H, Lee. A fully encapsulated piezoelectric–triboelectric hybrid nanogenerator for energy harvesting from biomechanical and environmental sources. eXPRESS Polymer Letters Vol.13, No.6 (2019) 533–542
[33] S. F. Lee, C. Y. Tsai, M. H. Xu, S. W. Wu, W. C. Lo, Y. H. Lu, Y. K. Fuh. Hybrid nano-textured nanogenerator and self-powered sensor for onskin triggered biomechanical motions. Nanotechnology - NANO-122619.R1 (2010)
[34] Jacques Curie, Pierre Curie. Phénomènes électriques des cristaux hémièdres à faces inclines. HAL Submitted on 1 Jan 1882
指導教授 李天錫 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明