博碩士論文 107323016 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:60 、訪客IP:18.222.120.133
姓名 吳偉立(Wei-Li Wu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 區域控制變形精密鍛造技術開發與散熱片及複雜曲面醫用刀具之應用研究
(Precision forging of heat spreader and complex- curved medical cutter through the controllable deformation zone)
相關論文
★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試
★ 無心研磨製程參數優化研究★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例
★ 精密熱鍛模擬及模具合理化分析★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究
★ 模組化滾針軸承自動組裝設備設計開發與功能驗證★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究
★ 雷射焊補運用於壓鑄模具壽命改善研究★ 晶粒成長行為對於高功率元件可靠度改善的驗證
★ HF-ERW製管製程分析及SCADA 工業4.0運用★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測
★ 精密閥件射出成形製程開發-CAE模擬與開模驗證★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證
★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究★ 複合式類神經網路預測貨櫃船主機油耗
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-2以後開放)
摘要(中) 本文提出了一種新型的散熱片精密鍛造工藝設計,並進行了有限元素分析研究和模擬驗證。這項研究的目的是用金屬板金鍛造(SBMF)代替散熱片的常用鍛造設計,並確定粗鍛在本製程的關鍵。此外,有限元方法(FEM)用於優化散熱片的寬度/可變毛邊可控變形區(W-CDZ / VF-CDZ)的設計,以在0.1(0.1mm/1000mm)的平行度和平面度的關鍵規格範圍內成型散熱片,材料流動,流動速度和應變相關分佈的模擬結果進行模擬分析。實驗和模擬結果顯示,通過適當設計W-CDZ和VF-CDZ,可以通過SBMF成功避免夾料缺陷的發生。在可控和穩定形變區域內,對成型負載,材料流動,流速和應變相關分佈進行了研究。此外,可以充分地改善成型順序和填充率,並且可以實現截面硬度的均勻分佈,從而可以提高使用中的散熱性能。
此外,本研究也將控制變形區的技術應用在複雜曲面醫用刀具,藉由控制局部區域的變形來減少鍛造過程中產生的殘餘應力,取代舊有的製造過程,以解決在後續殘餘應力造成的加工變形且根據體積分配使用廢料率更低的預成型,以達到成本減少與成型性上的改善
摘要(英) On this article, a novel precision forging process design for manufacturing radiators is proposed, and numerical research and simulation verification are carried out. The purpose of this study is to replace the commonly used forging design of the heat spreader with sheet bulk metal forming (SBMF) and identify the crucial station of the roughing forging process. In addition, the finite element method (FEM) is used to optimize the design of width/variable flash controllable deformation zone (W-CDZ /VF-CDZ) for the heat spreader to be formed within the critical specifications of parallelism and flatness of 0.1mm. The simulation analysis according to the simulation results of microscopic phenomena forming, material flow, flowing velocity and strain related distribution. The experimental and simulated results indicated that the occurrence of lapping defects can be successfully avoided through SBMF with proper design of W-CDZ and VF-CDZ. The forming load, material flow, flowing velocity and strain related distribution are thoroughly investigated within regions of both controllable and stable deformation zone. Furthermore, the forming sequence and filling ratio can be adequately improved, and a uniformly distributed cross-sectional hardness can be achieved, thereby heat dissipating performance-in-service can be augmented.
In addition, this research also applies the technology of controllable deformation zone to medical surgery cutter with complex curve surfaces. By controlling the deformation zone of specific area, the residual stress generated during the forging process is reduced, and also replaced the initial process with improvement process. Meanwhile, the preform with volume distribution theory can strongly reduce the waste, and improve the forming ability.
關鍵字(中) ★ 可控變形區
★ 精密鍛造
★ 鈑金成型
★ 銅散熱片
★ 醫用刀具
★ 可調式毛邊
關鍵字(英) ★ Controllable deformation zone
★ Precision forging
★ Sheet-bulk metal forming
★ Copper heat spreader
★ Variable flash
論文目次 目 錄
摘 要 I
Abstract II
誌 謝 IV
目 錄 V
圖目錄 VII
表目錄 XI
第一章:緒論 1
1-1 前言 1
1-2 研究動機及方法 2
第二章:文獻回顧 4
2-1 文獻回顧 4
2-2 鍛造加工製程 4
2-3 板金成型(SBMF)與控制變形區 6
2-4 冷間/溫間鍛造成型 7
2-5 有限元素模擬 8
第三章:材料與實驗設置 9
3-1 實驗設備 9
第四章:散熱片模擬結果與實驗探討 16
4-1 緒論 16
4-1-1 實驗材料 16
4-1-2 鍛造成型模具 17
4-1-3 QForm 有限元素模擬 19
4-2 傳統散熱片製程之缺陷 21
4-2-1 CDZ模具設計理念 24
4-3 有限元素模擬分析 25
4-3-1 散熱片預成型模擬分析 25
4-3-2 散熱片W-CDZ模擬分析 29
4-3-3 散熱片VF-CDZ 模擬分析 32
4-4 實驗與模擬結果與分析討論 40
第五章:複雜曲面醫用刀具模擬結果與實驗探討 44
5-1 緒論 44
5-1-1 實驗材料 44
5-1-2 鍛造成型模具 46
5-1-3 QForm 有限元素模擬 48
5-2 複雜曲面醫用刀具模擬製程之缺陷 49
5-3 複雜曲面醫用刀具模擬製程應力改善………………………………58
5-4 複雜曲面刀具應力改善結果…………………………………………62
第六章:結論 65
參考文獻 68
參考文獻 參考文獻
[1] Maciej Jaworski. Thermal performance of heat spreader for electronics cooling with incorporated phase change material. Applied Thermal Engineering, 2012; 212-219
[2] Shou-Shing Hsieh, Ron-Yu Lee, Jin-Cherng Shyu, Shao-Wen Chen. Thermal performance of flat vapor chamber heat spreader. Energy Conversion and Management,2008, 1774-1784
[3] Shung-Wen Kang, Sheng-Hong Tsai, Ming-Han Ko. Metallic micro heat pipe heat spreader fabrication. Applied Thermal Engineering, 2004; 299-309
[4] Yong Li, Jin-long Huang, Guang-wen Huang, Wei Wang, Jucong Chen, Zhixin Zeng. Comparison of radial forging between the two- and three-split dies of a thin-walled copper tube during tube sinking. Materials & Design, 2014; 822-832
[5] Young JikYoun, Sung Jin Kim. Fabrication and evaluation of a slicon-based micro pulsating heat spreader. Sensors and Actuators A: Physical, 2012; 189-197
[6] Chih-Chun Hsu, Huan-Yu Chiu, Chien-Chou Liao, Yiin-Kuen Fuh. An investigation on deformation mechanism of non-standard gear teeth forming in the hot impression forging of multicore cable cutter. Journal of Manufacturing Processes, 2020; 158-168
[7] M.Pawlicki, T.Drenger, M.Pieszak, J.Borowski. Cold upset forging joining of ultra-fine-grained aluminium and copper. Journal of Materials Processing Technology, 2015; 193-202
[8] B.-A.Behrens, E.DoegeaS.Reinsch, K.Telkamp, H.Daehndel, A.Specker. Precision forging processes for high-duty automotive components. Journal of Materials Processing Technology, 2007; 139-146
[9] M.Pietrzyk, L.Madej, R.Kuziak. Optimal design of manufacturing chain based on forging for copper alloys,with product properties being the objective function. CIRP Annals, 2010; 319-322
[10] Deng XB, Hua L, Han XH. Three-dimensional FEM modelling simulation of cold rotary forging of spiral bevel gear. Ironmak Steelmak 2011; 38:101–111
[11] Wan KT, Ho KL, Soo KB. Multi-stage cold forging and experimental investigation for the outer race of constant velocity joints. Mater Des 2013; 49:368–385
[12] Kroiß T, Engel U, Merklein M. Comprehensive approach for process modeling and optimization in cold forging considering interactions between process, tool and press. J Mater Process Technol 2013;213:1118–1127
[13] Mori, K., Nakano, T., 2016. State-of-the-art of plate forging in Japan. Prod. Eng. 10 (1),81–91.
[14] Mori, K., 2012. Bulk Forming of Sheet Metals for Controlling Wall Thickness Distribution
of Products. Steel Research International—Special Edition: 14th International Conference Metal Forming 2012. pp. 17–24.
[15] Merklein, M., Hagenah, H., 2016. Introduction to sheet-bulk metal forming. Prod. Eng. 10(1), 1–3.
[16] Jan Langner, Malte Stonis, Bernd-Arno Behrens. Experimental investigation of a variable flash gap regarding material flow and influence of trigger forces. Production Engineering, 2015; 289-297
[17] Shengfa Zhu, Xincun Zhuang, YinZhu, ZhenZhao. Thickening of cup sidewall through sheet-bulk forming with controllable deformation zone. Journal of Materials Processing Technology, 2018; 597-604
[18] Murat A, Tekkaya A, Özhan F. Comparison of various preforms for hot forging of bearing rings, journal of materials processing technology. J Mater Process Tech 2005;169:72–82
[19] Hsu C, Huang J, Chen W, et al. Numerical analysis and experimental validation on multi-stage warm forging process of deep groove ball bearing—a modified punch geometry with microstructure and defect analysis. Int J Adv Manuf Tech 2017;89(5–8):2119–2128. Gao ZS, [20] Li JB, Deng XZ, Yang JJ, et al. Research on gear tooth forming control in the closed die hot forging of spiral bevel gear, Int J Adv Manuf Technol 2018;94:2993–3004.
[21] Hongchao J, Jinping L, BaoyuW, Zhengrong Z, Tao Z, Zhenghuan H. Numerical analysis and experiment on cross wedge rolling and forging for engine valves. J Mater Process Technol 2015;221:223–242
[22] Duarte M, Martins H. Inner joint forming and pullout simulation using finite element analysis. SAE Tech Paper 2004;1:3422
[23] Zhu CD, Jiang X, Dai TL. Research on technology of twin rollers rotary forging of spiral bevel gears. Ironmak Steelmak 2015;42:632–640
[24] Chan WL, Fu MW, Lu J. Experimental and simulation study of deformation behavior in micro-compound extrusion process. Mater Des 2011;32:525–534
[25] Yang XL, Shu-Fang WU. Analysis on wear of forming die for precision forging of spiral bevel gears based on archard wear theory. J Changchun U 2014;4:451–454
[26] Materials modeling and finite element simulation of isothermal forging of electrolytic copper. Materials & Design, 2011; 1851-1858
[27] http://www.minchali.com.tw/products, 2020/7/1,登入
[28] QForm, finite element simulation software data base.
[29] P. Vijaya KumarG, Madhusudhan ReddyK, Srinivasa Rao,”Microstructure, mechanical and corrosion behavior of high strength AA7075 aluminium alloy friction stir welds – Effect of post weld heat treatment, Defence Technology 11(2015) 362-369
[30] Ruibin Mei1, Li Bao, Ban Cai, Changsheng Li and Xianghua Liu,” Piecewise Modeling of Flow Stress of 7075-T6 Aluminum Alloy in Hot Deformation” Materials Transactions, Vol. 57, No. 7 (2016) pp. 1147 to 1155©2016 The Japan Institute of Metals and Materials
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明