博碩士論文 106323113 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.133.155.48
姓名 林智隆(Zing-Long Lin)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 批量繞捲方法於化學氣相沉積法合成大面積單層與多層石墨烯之研究
(The synthesis high yield monolayer and multilayer graphene via batch to batch chemical vapor deposition)
相關論文
★ 利用化學氣相沉積法於規模化合成大面積石墨烯之研究★ 電化學輔助剝離於乾轉印大面積與超潔凈石墨烯之研究
★ 利用網印方法製備全固態石墨烯複合電極於高能量密度之微型電容的研究★ 有效披覆黑磷烯的穩定性之研究
★ Phosphorus and Nitrogen Dual-doped Graphene Oxide as Metal-free Catalyst for Hydrogen Evolution Reaction★ 利用氟化自組裝膜增強石墨烯與二硫化鉬的電傳輸特性之研究
★ 石墨烯之複合電極於全固態纖維式微型超電容的研究★ 利用改良液相剝離法提高銻烯合成產率與均質性之研究
★ 石墨烯的霍爾效應感測器應用於快速且無標記DNA之研究★ 利用低損傷電漿改質於提升二硫化鉬電晶體之電傳輸特性
★ 石墨烯場效應電晶體應用於鼻咽癌循環腫瘤細胞生醫感測晶片之研究★ 化學氣相沉積法合成二硫化鉬於矽基材料之可控性及變異性研究
★ 使用低損傷電漿改質於提升二維通道電晶體電傳輸特性★ 利用電化學剝離石墨烯之三維多孔隙電極於製作可撓式超級電容
★ 懸空石墨烯之特性研究與應用★ 結合分子臨場吸附與電化學剝離法製備高品質石墨烯
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 石墨烯有很多優異的特質,如高光穿透率、極佳的載子遷移率、良好機械性質等,被預期為下世代可撓式元件以及電子元件材料。其中化學氣相沉積法(Chemical Vapor Deposition, CVD)為目前合成高質量與大面積石墨烯的主要方法。以往的CVD合成石墨烯技術主要受限於高溫爐體積,造成製程成本提高以及批量生產效率低。本實驗為了提高生產效率以及降低製程成本,研究在有限空間內大規模生產石墨烯的方法。透過將銅箔以及不同材料的隔離層以繞捲方式合成單層與多層石墨烯。並且進一步探討以碳布、碳紙、發泡銅以及發泡鎳不同材料作為隔離層對此繞捲合成石墨烯品質的影響,隔離層其主要目的為避免繞捲銅箔在高溫製程中因堆疊而黏合。其中,因碳布其結構規律並含有孔隙有利於反應氣體擴散,以及在高溫製程中不會參與反應等特性最適合做為合成單層石墨烯的隔離層材料。經由調整環境氣氛、成長溫度、壓力以及成長時間所獲得的單層石墨烯最大合成面積可達900 cm2,片電阻約為0.94 (kΩ/□),I2D/IG = 1.51 ± 0.21,ID/IG = 0.14 ± 0.04;而發泡鎳具有溶碳的能力,藉由此特性作為合成多層石墨烯的隔離層材料 ;最大合成面積為100 cm2,並藉由光穿透分析為平均厚度為四層至五層的石墨烯。最後,此方法合成石墨烯單位時間內產率最大可達0.234 m2/h,與過去使用平面堆疊銅箔於一寸高溫爐的合成方法相比可以提升約450%;若將此繞捲方法延伸至六吋或八吋,其生產效率能提高到8.69 m2/h以及15.57 m2/h。因此本實驗提出一種能提高產率以及合成高結晶性石墨烯的方法,以利於往後可撓性材料生產應用。
摘要(英) Graphene has many excellent unique features, such as high optical transparency, excellent carrier mobility, and high mechanical strength, etc. and expected for next-generation flexible and electronic devices. Chemical vapor deposition (CVD) is the method for the synthesis of high-quality and large-area graphene; but, the area of as-grown graphene always limits by the size of the reaction furnace, which reduces production efficiency. In this experiment, we provide a developed method that improves production capacity to synthesis large-area monolayer and multilayer graphene using rolled-up copper foil with the spacer within in 1-inch furnace. Furthermore, the different materials such as carbon cloth, carbon paper, copper foam, and nickel foam selected as the spacer and the quality of as-prepared graphene further discussed. The spacer is to avoid the stacking copper foil adhesion during the high-temperature process. Among them, the carbon cloth is the suitable spacer material for synthesis monolayer graphene because of its structure, which allows reaction gas diffusion, and most important is stable during the high-temperature process. The largest area of monolayer graphene can achieve 900 cm2; the sheet resistance is around 0.94 kΩ/□, I2D/IG = 1.51 ± 0.21, ID/IG = 0.14 ±0.04. On the other hand, the nickel foam selected as the spacer for synthesis multilayer graphene, the available area of multilayer graphene is 100 cm2; and the average thickness that examined with the light transmittance is four to five layers. Finally, the production capacity can reach 0.23m2/h with a rolled-up structure, which is about 450% higher than the stacked planar copper foil in a 1-inch furnace. The production efficiency can increase to 8.69 m2/h and 15.57 m2/h when extending to a six or eight-inch furnace. Therefore, this experiment proposes a method to improve the production capacity and synthesize highly crystalline graphene, which is available for the future production and application of flexible materials.
關鍵字(中) ★ 石墨烯
★ 單層石墨烯
★ 多層石墨烯
★ 批量繞捲
★ 大面積石墨烯
★ 化學氣相沉積法
關鍵字(英) ★ monolayer graphene
★ multilayer graphene
★ chemical vapor deposition
論文目次 總目錄
摘要------------------------------------------------------i
Abstract------------------------------------------------ii
第一章 諸論-----------------------------------------------1
第二章 文獻回顧與研究背景----------------------------------3
2-1化學氣相沉積法合成石墨烯之機制---------------------------3
2-2以化學氣相沉積法合成多層石墨烯之機制---------------------3
2-3系統環境因素對石墨烯結晶影響----------------------------5
2-3-1氣流對石墨烯結晶之影響--------------------------------5
2-3-2成長溫度之影響---------------------------------------7
2-3-3降溫速率快慢對石墨烯結晶之影響------------------------9
2-3-4成長壓力對石墨烯結晶之影響---------------------------11
2-4生產大面積石墨烯方式-----------------------------------13
2-4-1捲對捲生產(Roll-to-roll,R2R)-----------------------13
2-4-2大批量生產(Batch-to-Batch,B2B)---------------------16
2-5研究動機----------------------------------------------21
第三章 實驗架構與流程-------------------------------------23
3-1實驗用品清冊------------------------------------------23
3-2實驗儀器----------------------------------------------23
3-3-1批量繞捲化學氣相沈積法-------------------------------24
3-3-2石墨烯轉印與結晶性分析-------------------------------26
第四章 結果與討論-----------------------------------------28
4-1合成單層參數石墨烯之調整-------------------------------28
4-1-1氣流調整對石墨烯之影響 ------------------------------28
4-1-2溫度提高對二次成核降低的影響-------------------------35
4-1-3再現性----------------------------------------------38
4-1-4繞捲材料--------------------------------------------39
4-1-5大面積合成------------------------------------------42
4-1-6降低二次密度----------------------------------------45
4-2合成多層參數石墨烯之調整-------------------------------47
4-2-1壓力調整對多層石墨烯之影響---------------------------47
4-2-2氬氣變化對多層石墨烯之影響---------------------------48
4-2-3溫度提高對多層石墨烯成長之影響-----------------------50
4-2-4參數優化--------------------------------------------52
4-2-5不同繞捲材料對多層石墨烯合成之影響--------------------57
4-2-6發泡鎳合成多層石墨烯,對不同成長時間之影響------------60
4-2-7大面積合成------------------------------------------63
4-3產率--------------------------------------------------64
第五章 結論----------------------------------------------68
第六章 未來工作------------------------------------------69
第七章 參考文獻------------------------------------------70
參考文獻 第七章 參考文獻

1. Novoselov, K.S., et al., Electric field effect in atomically thin carbon films. Science, 2004. 306(5696): p. 666-9.
2. Tetlow, H., et al., Growth of epitaxial graphene: Theory and experiment. Physics Reports, 2014. 542(3): p. 195-295.
3. Hummers, W.S.a.R.E.O., Preparation of Graphitic Oxide. Journal of the American Chemical Society, 1957. 80(6): p. 1339 1339.
4. Su, C.Y., et al., High-quality thin graphene films from fast electrochemical exfoliation. ACS Nano, 2011. 5(3): p. 2332-9.
5. Ciesielski, A. and P. Samori, Graphene via sonication assisted liquid-phase exfoliation. Chem Soc Rev, 2014. 43(1): p. 381-98.
6. Muñoz, R. and C. Gómez-Aleixandre, Review of CVD Synthesis of Graphene. Chemical Vapor Deposition, 2013. 19(10-11-12): p. 297-322.
7. Lee, X.J., et al., Review on graphene and its derivatives: Synthesis methods and potential industrial implementation. Journal of the Taiwan Institute of Chemical Engineers, 2019. 98: p. 163-180.
8. Zou, K. and J. Zhu, Transport in gapped bilayer graphene: The role of potential fluctuations. Physical Review B, 2010. 82(8).
9. Mak, K.F., et al., Observation of an electric-field-induced band gap in bilayer graphene by infrared spectroscopy. Phys Rev Lett, 2009. 102(25): p. 256405.
10. Yin, J., et al., Selectively enhanced photocurrent generation in twisted bilayer graphene with van Hove singularity. Nat Commun, 2016. 7: p. 10699.
11. Kuroda, M.A., et al., Conductance through multilayer graphene films. Nano Lett, 2011. 11(9): p. 3629-33.
12. Shahil, K.M.F. and A.A. Balandin, Thermal properties of graphene and multilayer graphene: Applications in thermal interface materials. Solid State Communications, 2012. 152(15): p. 1331-1340.
13. Todorović, D., et al., Multilayer graphene condenser microphone. 2D Materials, 2015. 2(4).
14. Deng, B., Z. Liu, and H. Peng, Toward Mass Production of CVD Graphene Films. Adv Mater, 2019. 31(9): p. e1800996.
15. Baraton, L., et al., Study of Graphene Growth Mechanism on Nickel Thin Films, in GraphITA 2011. 2012. p. 1-7.
16. Lee, B.-J. and G.-H. Jeong, Comparative study on graphene growth mechanism using Ni films, Ni/Mo sheets, and Pt substrates. Applied Physics A, 2014. 116(1): p. 15-24.
17. Ramon, M.E., et al., CMOS-compatible synthesis of large-area, high-mobility graphene by chemical vapor deposition of acetylene on cobalt thin films. ACS Nano, 2011. 5(9): p. 7198-204.
18. Xue, Y., et al., Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Research, 2011. 4(12): p. 1208-1214.
19. Kalbac, M., O. Frank, and L. Kavan, The control of graphene double-layer formation in copper-catalyzed chemical vapor deposition. Carbon, 2012. 50(10): p. 3682-3687.
20. Liu, J., et al., Controllable Growth of the Graphene from Millimeter-Sized Monolayer to Multilayer on Cu by Chemical Vapor Deposition. Nanoscale Res Lett, 2015. 10(1): p. 455.
21. Wu, P., et al., Bilayer Graphene Growth via a Penetration Mechanism. The Journal of Physical Chemistry C, 2014. 118(12): p. 6201-6206.
22. Wu, B., et al., Equiangular hexagon-shape-controlled synthesis of graphene on copper surface. Adv Mater, 2011. 23(31): p. 3522-5.
23. Bhaviripudi, S., et al., Role of kinetic factors in chemical vapor deposition synthesis of uniform large area graphene using copper catalyst. Nano Lett, 2010. 10(10): p. 4128-33.
24. Zhang, Y.H., et al., Controllable growth of millimeter-size graphene domains on Cufoil. Materials Letters, 2013. 96: p. 149-151.
25. Luo, B., et al., Etching-Controlled Growth of Graphene by Chemical Vapor Deposition. Chemistry of Materials, 2017. 29(3): p. 1022-1027.
26. Xing, S., et al., Kinetic study of graphene growth: Temperature perspective on growth rate and film thickness by chemical vapor deposition. Chemical Physics Letters, 2013. 580: p. 62-66.
27. Kim, H., et al., Activation energy paths for graphene nucleation and growth on Cu. ACS Nano, 2012. 6(4): p. 3614-23.
28. Choi, D.S., et al., Effect of cooling condition on chemical vapor deposition synthesis of graphene on copper catalyst. ACS Appl Mater Interfaces, 2014. 6(22): p. 19574-8.
29. Seo, J., et al., Study of Cooling Rate on the Growth of Graphene via Chemical Vapor Deposition. Chemistry of Materials, 2017. 29(10): p. 4202-4208.
30. Hedayat, S.M., J. Karimi-Sabet, and M. Shariaty-Niassar, Evolution effects of the copper surface morphology on the nucleation density and growth of graphene domains at different growth pressures. Applied Surface Science, 2017. 399: p. 542-550.
31. Li, G., S.H. Huang, and Z. Li, Gas-phase dynamics in graphene growth by chemical vapour deposition. Phys Chem Chem Phys, 2015. 17(35): p. 22832-6.
32. Heo, J.H., et al., Highly flexible, high-performance perovskite solar cells with adhesion promoted AuCl3-doped graphene electrodes. J. Mater. Chem. A, 2017. 5(40): p. 21146-21152.
33. Kim, H.H., et al., Water-free transfer method for CVD-grown graphene and its application to flexible air-stable graphene transistors. Adv Mater, 2014. 26(20): p. 3213-7.
34. Guo, W., et al., Synthesis of nickel nanosheet/graphene composites for biosensor applications. Carbon, 2014. 79: p. 636-645.
35. Kato, R., et al., Strain analysis of plasma CVD graphene for roll-to-roll production by scanning transmission electron microscopy and Raman spectroscopy. Japanese Journal of Applied Physics, 2017. 56(3).
36. Hesjedal, T., Continuous roll-to-roll growth of graphene films by chemical vapor deposition. Applied Physics Letters, 2011. 98(13).
37. Deng, B., et al., Roll-to-Roll Encapsulation of Metal Nanowires between Graphene and Plastic Substrate for High-Performance Flexible Transparent Electrodes. Nano Lett, 2015. 15(6): p. 4206-13.
38. Polsen, E.S., et al., High-speed roll-to-roll manufacturing of graphene using a concentric tube CVD reactor. Sci Rep, 2015. 5: p. 10257.
39. Zhong, G., et al., Growth of continuous graphene by open roll-to-roll chemical vapor deposition. Applied Physics Letters, 2016. 109(19).
40. Yamada, T., et al., A roll-to-roll microwave plasma chemical vapor deposition process for the production of 294mm width graphene films at low temperature. Carbon, 2012. 50(7): p. 2615-2619.
41. Yamada, T., M. Ishihara, and M. Hasegawa, Large area coating of graphene at low temperature using a roll-to-roll microwave plasma chemical vapor deposition. Thin Solid Films, 2013. 532: p. 89-93.
42. Xin, H. and W. Li, A review on high throughput roll-to-roll manufacturing of chemical vapor deposition graphene. Applied Physics Reviews, 2018. 5(3).
43. Alrefae, M.A., et al., Process optimization of graphene growth in a roll-to-roll plasma CVD system. AIP Advances, 2017. 7(11).
44. Kobayashi, T., et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Applied Physics Letters, 2013. 102(2).
45. Bae, S., et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
46. Hsieh, Y.-P., et al., High-Throughput Graphene Synthesis in Gapless Stacks. Chemistry of Materials, 2015. 28(1): p. 40-43.
47. Wang, H., et al., Surface Monocrystallization of Copper Foil for Fast Growth of Large Single-Crystal Graphene under Free Molecular Flow. Adv Mater, 2016. 28(40): p. 8968-8974.
48. Huet, B., et al., Multi-wafer batch synthesis of graphene on Cu films by quasi-static flow chemical vapor deposition. 2D Materials, 2019. 6(4).
49. Bong, H., et al., Graphene growth under Knudsen molecular flow on a confined catalytic metal coil. Nanoscale, 2015. 7(4): p. 1314-24.
50. 中國科學院重慶綠色智能技術研究院, 重., CN Patent NO. 104477898A. 2014.
51. 中國科學院重慶綠色智能技術研究院, 重., CN Patent NO. 204454598U. 2015.
52. 中國科學院重慶綠色智能技術研究院, 重., CN Patent NO. 104477893U. 2015.
53. Vlassiouk, I., et al., Large scale atmospheric pressure chemical vapor deposition of graphene. Carbon, 2013. 54: p. 58-67.
54. Xu, J., et al., Fast Batch Production of High-Quality Graphene Films in a Sealed Thermal Molecular Movement System. Small, 2017. 13(27).
55. Piner, R., et al., Graphene synthesis via magnetic inductive heating of copper substrates. ACS Nano, 2013. 7(9): p. 7495-9.
56. Ryu, J., et al., Fast synthesis of high-performance graphene films by hydrogen-free rapid thermal chemical vapor deposition. ACS Nano, 2014. 8(1): p. 950-6.
57. Nagai, Y., H. Sugime, and S. Noda, 1.5 Minute-synthesis of continuous graphene films by chemical vapor deposition on Cu foils rolled in three dimensions. Chemical Engineering Science, 2019. 201: p. 319-324.
58. Strobl and Karlheinz, US Patent NO. 9738973B2. 2017.
59. Fauzi, F.B., et al., The role of gas-phase dynamics in interfacial phenomena during few-layer graphene growth through atmospheric pressure chemical vapour deposition. Phys Chem Chem Phys, 2020. 22(6): p. 3481-3489.
指導教授 蘇清源(Ching-Yuan Su) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明