博碩士論文 107323114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:38 、訪客IP:18.227.52.94
姓名 陳泓亦(Hung-Yi Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 有機金屬化學氣相沉積 P型GaN薄膜摻雜製程數值分析
(Numerical Analysis of P-type GaN Thin Film Doping Process in Metal Organic Chemical Vapor Deposition)
相關論文
★ 鋰鋁矽酸鹽之負熱膨脹陶瓷製程★ 鋰鋁矽酸鹽摻鈦陶瓷之性質研究
★ 高功率LED之熱場模擬與結構分析★ 干涉微影之曝光與顯影參數對週期性結構外型之影響
★ 週期性極化反轉鈮酸鋰之結構製作與研究★ 圖案化藍寶石基板之濕式蝕刻
★ 高功率發光二極體於自然對流環境下之熱流場分析★ 液珠撞擊熱板之飛濺行為現象分析
★ 柴式法生長氧化鋁單晶過程最佳化熱流場之分析★ 柴式法生長氧化鋁單晶過程晶體內部輻射對於固液界面及熱應力之分析
★ 交流電發光二極體之接面溫度量測★ 柴氏法生長單晶矽過程之氧雜質傳輸控制數值分析
★ 泡生法生長大尺寸氧化鋁單晶降溫過程中晶體熱場及熱應力分析★ KY法生長大尺寸氧化鋁單晶之數值模擬分析
★ 外加水平式磁場柴氏法生長單晶矽之熱流場及氧雜質傳輸數值分析★ 大尺寸LED晶片Efficiency Droop之光電熱效應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 以氮化鎵為基材所開發的電晶體已被證實不論電子遷移率、高功率、耐高溫等特性與傳統矽基材料相比皆有數個量級的提升,以有機氣相沉積技術生長的氮化鎵品質,已可以滿足在光電元件上的應用如發光二極體(light emitting diodes)、雷射二極體(laser diodes),然而在深紫外光(DUV)波長范圍內工作光電二極體(photodiodes)對於薄膜的電性要求較高,對於磊晶薄膜之中的摻雜物的濃度以及均勻度皆有更高的要求。

為滿足此性質要求,其一困難便是p-type摻雜效率(doping efficient)仍然不夠高,由於Mg的活化能較高,只有約(1-5%)的Mg能成功激活成電洞載子。其中delta doping摻雜方式是提升薄膜電性的方式。相比於unifom doping,delta doping 生長的p-type GaN 有著更高的電洞載子濃度因而有更佳的薄膜電性。

本研究透過數值模擬的方式建立穩態Unifom doping模型及暫態Delta (δ) doping模型,以近耦合腔體分析其製程特性,其中包含二維與三維腔體幾何比較分析、薄膜沉積物種分析、摻雜製程分析,以提高摻雜製程掌控性。
摘要(英) The transistors developed with gallium nitride as the substrate has been proven to have several orders of magnitude improvement over traditional silicon-based materials, regardless of electron mobility, high power, and high temperature resistance. The GaN quality growth by metal organic vapor chemical deposition technology can already meet the application of optoelectronic components such as light emitting diodes, laser diodes. But the photodiodes that works in the deep ultraviolet (DUV) wavelength range has higher electrical requirements and higher requirements for the concentration and uniformity of the dopants in the epitaxial thin film.

One difficulty to meet this requirement is that the p-type doping efficiency is still not enough. Due to the high activation energy of Mg, only about (1-5%) of Mg can be successfully activated into a hole carriers. The delta doping method is a way to improve the electrical properties of the thin film. Compared with uniform doping, delta doping grown p-type GaN has higher hole carrier concentration and better film electrical properties.

In this study, the steady-state Uniform doping model and the unsteady-state Delta (δ) doping model are established by numerical simulation. The Close- Coupled Showerhead reactor will be applied. The study include two-dimensional and three-dimensional reactor geometric comparison analysis、thin-film deposition species analysis、doping process analysis. In order to improve the control of the doping process.
關鍵字(中) ★ 有機金屬化學氣相沉積
★ 氮化鎵
★ P型
★ 摻雜
關鍵字(英) ★ MOCVD
★ Gallium nitride
★ P-type
★ Doping
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
符號說明 ix
第一章 緒論 1
1.1研究背景 1
1.2 MOCVD以及摻雜 1
1.3氮化鎵化學反應 2
1.4摻雜方式(Delta doping and Unifom doping) 3
1.5摻雜物種化學反應路徑 4
1.6摻雜過程加合物 5
1.7研究動機與目的 6
第二章 研究方法 12
2.1模型幾何 12
2.2基本假設 12
2.3統御方程式 13
2.4邊界條件 13
2.5混合氣體物理特性 15
2.6化學反應速率式 16
2.7表面化學計算 18
2.8薄膜沉積速率(Film growth rate) 19
2.9摻雜濃度計算(Dopant concentration) 19
2.10 薄膜沉積化學反應式 20
2.11 摻雜化學反應式 20
第三章 數值方法 24
3.1數值求解步驟 24
3.2網格配置與測試 24
第四章 結果與討論 29
4.1薄膜沉積模型驗證 29
4.2二維與三維腔體分析比較 30
4.3腔體內物種分析 31
4.4 進氣溫度對於物種分布的影響 31
4.5分析盤面各點氣流達穩定時間 32
4.6 兩製程摻雜物種總量比較 33
第五章 結論與未來研究方向 43
5.1結論 43
5.2未來研究方向 45
參考文獻 46
參考文獻 [1] R. Zuo, H. Yu, N. Xu, and X. He, “Influence of Gas Mixing and Heating on Gas-Phase Reactions in GaN MOCVD Growth”, ECS Journal of Solid State Science and Technology, Vol 1, pp. 46-53, July 2012.
[2] Y. B. Pan, Z. J. Yang, Y. Lu, M. Lu, C. Y. Hu, T. J. Yu, X. D. Hu, and G. Y. Zhang “Improvement of properties of p-GaN by Mg delta doping”, Chinese Physics Letters., Vol 21, No. 10, May 2004.
[3] M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping”, Appl. Phys. Lett., Vol 82, pp. 3041-3043, May 2003.
[4] C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi. “Delta-doping optimization for high quality p-type GaN”, J. Appl. Phys., Vol 104, pp. 1-6, October 2008.
[5] T. Liu, Z. Hong, and Y. Yuan,“Theoretical investigation on gas-phase reaction mechanism of Cp2Mg in p- type doping process of Group III nitrides”, Computational and Theoretical Chemistry., Vol 1177, pp. 112793, May 2020.
[6] X. Yulun, S. Huang, Z. Zheng, B. Fan, Z. Wu, H. Jiang, and G. Wang, “Effects of growth pressure on the properties of p-GaN layers”, Journal of Crystal Growth., Vol 325, pp. 32-35, June 2011.
[7] Y. Nagai, H. Niwa, A. Hashimoto, and A. Yamamoto, “Adduct formation of CP2Mg with NH3 in MOVPE growth of Mg-doped InN”, Phys. stat. sol., Vol 4, No. 7, pp. 2457–2460, June 2007.
[8] D. Sengupta, S. Mazumder, W. Kuykendall, Lowry, and S. A. Lowry, “Combined ab initio quantum chemistry and computational fluid dynamics calculations for prediction of gallium nitride growth”, Journal of Crystal Growth., Vol 279, pp. 369-382, March 2005.
[9] Y. J. Zhou, Z. Q. Li, A. EL Boukili, and Z. M. Simon Li, “Process simulation of p-doping in GaN and related group III nitrides”, Phys. stat. sol., Vol 4, No. 5, pp. 1694-1697, April 2007.
[10] Z. Zhang, H. Fang, H. Yan, Z. Jiang, J. Zheng, and Z. Gan,“Influencing factors of GaN growth uniformity through orthogonal test analysis”, Applied Thermal Engineering., Vol 91, pp. 53-61, August 2015.
[11] Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, and H. Jiang, “Enhanced Mg Doping Efficiency in P-Type GaN by Indium-Surfactant-Assisted Delta Doping Method”, Applied Physics Express., Vol 6, No. 4, pp. 041001, March 2013.
[12] 林暐捷,「MOCVD 行星式腔體之模型建立與傳輸現象分析」,國立中央大學,碩士論文,民國107年。
[13] H. Zhang , R. Zuo, and G. Zhang. “Effects of reaction-kinetic parameters on modeling reaction pathways in GaN MOVPE growth”, Journal of Crystal Growth., Vol 478, pp. 193-204, August 2017.
指導教授 陳志臣(Jyh-Chen Chen) 審核日期 2020-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明