博碩士論文 107323031 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:69 、訪客IP:18.226.52.179
姓名 許世宥(Shih-yu Hsu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 微放電結合電泳拋光於鐵基金屬玻璃微孔加工之研究
(Study on Fe-based metallic glass micro hole machining by using micro-EDM combined with electrophoretic deposition polishing)
相關論文
★ 電泳沉積輔助拋光於SUJ2軸承鋼加工特性之研究★ 碳化矽電泳拋光矽晶圓表面粗糙度之研究
★ 超音波輔助添加導電粉末於放電加工鐵基金屬玻璃之研究★ 超音波輔助液中磨削鐵基金屬玻璃之研究
★ 脈衝複合偏壓電化學放電加工石英晶圓之研究★ 超音波振動輔助電化學放電加工石英晶圓陣列微孔之研究
★ 超音波輔助電化學留心加工矩槽圓柱構造之研究★ 快速塑性成型(QPF)製程的精準度探討
★ 利用灰色關聯分析法探究線切割放電於SKD61加工之最佳化參數★ 超音波輔助微電化學鑽孔鎳基合金加工研究
★ 超音波輔助添加碳化矽粉末於放電加工模具鋼SKD61之研究★ Inconel 718 鎳基超合金異形電極微孔放電加工之研究
★ 實驗分析研究應用於減低數據中心伺服器硬碟之結構傳遞振動★ 超音波輔助電化學加工微孔陣列之研究
★ 超音波輔助磨削AGC玻璃加工之研究★ Inconel718鎳基超合金添加石墨烯粉末 微孔放電加工之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本研究是利用螺旋刀具電極對鐵基金屬玻璃進行放電加工與電泳沉積法自製複合拋光輪進行微孔側壁拋光之複合加工,實驗主要可分為三個部分,首先以螺旋電極進行放電微孔加工,探討加工參數,包括脈衝時間、間隙電壓、衝擊係數、電極轉速對放電微孔加工精度、加工時間及電極消耗長度等品質特性的影響,第二部分採用電泳沉積法自製複合拋光輪,探討沉積時間及披覆電壓等電泳參數,對電泳沉積後複合拋光輪之成型特徵及成型尺寸的影響,第三部分係使用複合拋光輪對微孔側壁拋光,並使用SEM進行拋光後微孔內表面微結構觀察,以及採用雷射共軛焦顯微鏡量測微孔內表面粗糙度,另進行XRD拋光後微孔內表面結晶相鑑定。
研究結果顯示,在加工參數方面,脈衝時間設定由5 µs延長至20 µs時,加工時間增加48%,電極消耗長度亦同時增加,且在較長之脈衝時間時,會形成較大的破裂坑洞;當間隙電壓由30 V增加到50 V時,入口孔徑、出口孔徑及加工時間皆會增加,間隙電壓為30 V時,電極消耗長度為最長。在衝擊係數為20%時,加工效率與孔徑精度較差,當衝擊係數由20%增加至40%時,加工時間減少74%;電極轉速1150 rpm時,可得到較小之孔徑尺寸及電極消耗長度,以及較佳的微孔側壁形貌。利用本實驗電泳沉積法製作的複合拋光輪對微孔側壁拋光,能將微孔放電後之表面粗糙度Ra值由0.427 µm減少至0.018 µm,已達到鏡面等級。採用XRD相鑑定拋光後微孔側壁表面,側壁表面Si之結晶相生成。
摘要(英) The study used helical tool for electrical discharge micro hole drilling (EDMD) process on Fe-based metallic glass and polishing the inner surface of the micro hole by making composite by electrophoretic deposited tool. The experiment can be divided into three parts. In the first part, EDMD was performed by using helical tool. The influence of processing parameter including pulse on time, gap voltage, duty factor and spindle rotational speed on micro hole machining accuracy, machining time and electrode wear length were investigated. In the second part, the influence of parameters such as deposition time and voltage, on the shape of the deposition and diameter of tool. In the third part, the electrophoretic deposited tool was used to polish the inner surface of the electrical discharged micro hole. SEM and LSCM were used to observe and measure the shape of micro hole inner walls and surface roughness. In addition, XRD was used to identify the crystallization phase.
In terms of processing parameters, there is a significant increased by 48% in machining time as the pulse on time was increased from 5 µs to 20 µs, and the electrode wear length was increased as well. Also, when the pulse on time was longer, the larger craters were formed. As the gap voltage were increased from 30 V to 50 V, the inlet diameter, outlet diameter and machining time were increased. The tool wear length was the longest at the gap voltage of 30 V. The processing efficiency and the worst micro hole accuracy were obtained at the duty factor of 20%. A significant machining time was decreased by 74% as the pulse on time increased from 20% to 40%. The best micro hole accuracy, tool wear length and the inner surface, were obtained at the spindle rotation speed of 1150 rpm. The composite tool was made by electrophoretic deposition. The surface roughness of the workpiece can be reduced from 0.427 µm to 0.018 µm after the inner surface polishing. The inner surface was polished up to mirror surface. The XRD pattern shows that the crystalline phase of Si was generated after processing.
關鍵字(中) ★ 微孔放電加工
★ 電泳沉積拋光
★ 金屬玻璃
關鍵字(英) ★ Micro-EDM
★ electrophoretic deposition polishing
★ metallic glass
論文目次 摘 要 I
ABSTRACT II
誌 謝 IV
目 錄 V
圖目錄 VII
第一章 緒論 1
1-1 研究背景 1
1-2 研究動機及目的 2
1-3 文獻回顧 4
1-4 研究方法 8
第二章 實驗原理 9
2-1 放電加工基礎原理 9
2-1-1 放電加工原理 9
2-1-2 放電加工的材料移除機制 10
2-1-3 加工參數及其影響 13
2-2 電泳沉積法之原理[39, 40] 16
2-2-1 電泳沉積之方式與沉積速率 16
2-2-2 電雙層(The electric double layer) 18
2-2-3 粉體粒子表面電荷來源 19
2-2-4 電泳懸浮液內粉體粒子間分散行為之機制 20
第三章 實驗設備、材料及方法 22
3-1 實驗簡介 22
3-2 實驗設備 23
3-3 實驗材料 32
3-4 實驗方法 36
第四章 結果討論 47
4-1 放電加工之參數影響探討 47
4-1-1 脈衝時間之影響 47
4-1-2 間隙電壓之影響 57
4-1-3 衝擊係數之影響 67
4-1-4 電極轉速之影響 76
4-2電泳研磨拋光之結果探討 86
4-2-1 沉積時間與披覆電壓之探討 86
4-2-1-1 沉積時間之影響 86
4-2-1-2 披覆電壓之影響 87
4-2-2 研磨拋光結果之探討 88
4-3 XRD特性分析 93
第五章 結論 95
未來展望 97
參考文獻 98
參考文獻 [1] Chen, X.H., et al., "Fabrication and characterization of metallic glasses with a specific microstructure for micro-electro-mechanical system applications". Journal of Non-Crystalline Solids, 354(28): pp. 3308-3316, 2008.
[2] Kagaya, K., Y. Ōishi, and K. Yada, "Micro-electrodischarge machining using water as a working fluid—I: micro-hole drilling". Precision Engineering, 8(3): pp. 157-162, 1986.
[3] Ehrfeld, W. and H. Lehr, "Deep X-ray lithography for the production of three-dimensional microstructures from metals, polymers and ceramics". Radiation Physics and Chemistry, 45(3): pp. 349-365, 1995.
[4] Sun, X.-Q., T. Masuzawa, and M. Fujino, "Micro ultrasonic machining and its applications in MEMS". Sensors and Actuators A: Physical, 57(2): pp. 159-164, 1996.
[5] Choi, S.S., et al., "Fabrication of microelectron gun arrays using laser micromachining". Microelectronic engineering, 41: pp. 167-170, 1998.
[6] Kupka, R., et al., "Microfabrication: LIGA-X and applications". Applied Surface Science, 164(1-4): pp. 97-110, 2000.
[7] KUO, C.-L.; MASUZAWA, T.; FUJINO, M. "A micropipe fabrication process". IEEE Micro Electro Mechanical Systems, pp. 80-85, 1991.
[8] Wang, A.C., et al., "Use of micro ultrasonic vibration lapping to enhance the precision of microholes drilled by micro electro-discharge machining". International Journal of Machine Tools and Manufacture, 42(8): pp. 915-923, 2002.
[9] Yang, C., S. Ho, and B.H. Yan. "Micro hole machining of borosilicate glass through electrochemical discharge machining (ECDM)". Key Engineering Materials, 190: pp. 149-166, 2001.
[10] T.Masuzawa, M.Yamamoto and M.Fujino, “A Micropunching System Using Wire-EDM”, Proc. Of Int’l Symposium for Electromachining(ISME-9), pp.86-89, 1989.
[11] T. Masuzawa, “An Approach to Micromachining through Machine Tool Technology”, Annals of the CIRP, 34, 1, pp. 419-425, 1985.
[12] Sheu, D.-Y., "Multi-spherical probe machining by EDM: Combining WEDG technology with one-pulse electro-discharge". Journal of materials processing technology, 149(1-3): pp. 597-603, 2004.
[13] SHEU, D.-Y., "Micro-spherical probes machining by EDM". Journal of micromechanics and microengineering, 15(1): pp. 185-189, 2005.
[14] Hou, K., et al., "The wear behaviour of electro-codeposited Ni–SiC composites". Wear, 253(9-10): pp. 994-1003, 2002.
[15] Liew, P.J., J. Yan, and T. Kuriyagawa, "Fabrication of deep micro-holes in reaction-bonded SiC by ultrasonic cavitation assisted micro-EDM". International Journal of Machine Tools and Manufacture, 76: pp. 13-20, 2014.
[16] Dong, S., Z. Wang, and Y. Wang, "Micro-EDM drilling of high aspect ratio micro-holes and in situ surface improvement in C17200 beryllium copper alloy". Journal of Alloys and Compounds, 727: pp. 1157-1164, 2017.
[17] Saxena, K.K., et al., "Characterization of circumferential surface roughness of micro-EDMed holes using replica technology". Procedia CIRP, 68: pp. 582-587, 2018.
[18] Wang, D., et al., "A study on micro-hole machining of polycrystalline diamond by micro-electrical discharge machining". Journal of Materials Processing Technology, 211(1): pp. 3-11, 2011.
[19] Li, G., W. Natsu, and Z. Yu, "Study on quantitative estimation of bubble behavior in micro hole drilling with EDM". International Journal of Machine Tools and Manufacture, 146: pp. 103437, 2019.
[20] Natsu, W. and H. Maeda, "Realization of High-speed Micro EDM for High-aspect-Ratio Micro Hole with Mist Nozzle". Procedia CIRP, 68: pp. 575-577, 2018.
[21] Dong, S., et al., "An Experimental Investigation of Enhancement Surface Quality of Micro-holes for Be-Cu Alloys Using Micro-EDM with Multi-diameter Electrode and Different Dielectrics". Procedia CIRP, 42: pp. 257-262, 2016.
[22] Yu, Z.Y., et al., "High aspect ratio micro-hole drilling aided with ultrasonic vibration and planetary movement of electrode by micro-EDM". CIRP Annals, 58(1): pp. 213-216, 2009.
[23] Hsue, A.W.-J. and Y.-F. Chang, "Toward synchronous hybrid micro-EDM grinding of micro-holes using helical taper tools formed by Ni-Co/diamond Co-deposition". Journal of Materials Processing Technology, 234: pp. 368-382, 2016.
[24] Lu, J., et al., "Fabrication of a resin-bonded ultra-fine diamond abrasive polishing tool by electrophoretic co-deposition for SiC processing". Precision Engineering, 47: pp. 353-361, 2017.
[25] Simović, K., et al., "Electrophoretic deposition of thin alumina films from water suspension". Colloids and Surfaces A: Physicochemical and Engineering Aspects, 209(1): pp. 47-55, 2002.
[26] Tsui, H.-P., et al., "Fabrication of a Microtool in Electrophoretic Deposition for Electrochemical Microdrilling and in Situ Micropolishing". Materials and Manufacturing Processes, 26(5): pp. 740-745, 2011.
[27] Tsui, H.-P., et al., "A study on stainless steel mirror surface polishing by using the electrophoretic deposition method". International Journal of Machine Tools and Manufacture, 47(12-13): pp. 1965-1970, 2007.
[28] Tani, Y., et al., "Infeed Grinding of Silicon Wafers Applying Electrophoretic Deposition of Ultrafine Abrasives". CIRP Annals, 47(1): pp. 245-248, 1998.
[29] Huang, H. and J. Yan, "Microstructural changes of Zr-based metallic glass during micro-electrical discharge machining and grinding by a sintered diamond tool". Journal of Alloys and Compounds, 688: pp. 14-21, 2016.
[30] Huang, H. and J. Yan, "On the surface characteristics of a Zr-based bulk metallic glass processed by microelectrical discharge machining". Applied Surface Science, 355: pp. 1306-1315, 2015.
[31] Kuriakose, S., P.K. Patowari, and J. Bhatt, "Machinability study of Zr-Cu-Ti metallic glass by micro hole drilling using micro-USM". Journal of Materials Processing Technology, 240: pp. 42-51, 2017.
[32] Liu, C., et al., "Experimental investigation and numerical simulation of micro-EDM of bulk metallic glass with focus on crater sizes". Procedia Manufacturing, 34: pp. 275-286, 2019.
[33] Yeo, S.H., et al., "Processing of Zirconium-Based Bulk Metallic Glass (BMG) Using Micro Electrical Discharge Machining (Micro-EDM)". Materials and Manufacturing Processes, 24(12): pp. 1242-1248, 2009.
[34] Hsieh, S.-F., et al., "Crystallization and carbonization of an electrical discharge machined Zr-based bulk metallic glass alloy". Journal of Materials Research, 28(22): pp. 3177-3184, 2013.
[35] 陳世瑋,不同製程對鋯-銅-鋁非晶質合金內析出 ZrCu B2 相分布及其機械性質影響之研究,國立中央大學機械工程系,碩士論文,2014。
[36] Xu, B., et al., "Micro-electrical discharge machining of 3D micro-molds from Pd40Cu30P20Ni10metallic glass by using laminated 3D micro-electrodes". Journal of Micromechanics and Microengineering, 26(3): pp. 035004, 2016.
[37] 倉藤上雄、風誠三郎著,鄒大鈞譯,放電加工,復漢出版社。
[38] 許世勳,大面積放電加工技術之研究,國立中央大學機械工程系,碩士論文,2012。
[39] 陳正德,碳化矽的電泳沈積現象探討,國立中央大學機械工程系,碩士論文,2002。
[40] 許笙載,運用電泳沉積法於不鏽鋼鏡面拋光之研究,國立中央大學機械工程系,碩士論文,2007。
[41] Kumar, K., et al., "Experimental Study on Diametric Expansion and Taper Rate in EDM Drilling For High Aspect Ratio Micro Holes in High Strength Materials". Materials Today: Proceedings, 5(2): pp. 7363-7372, 2018.
指導教授 崔海平(Hai-Ping Tsui) 審核日期 2020-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明