博碩士論文 107323023 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:48 、訪客IP:18.226.226.221
姓名 曾宥維(Yu-Wei Tseng)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 固態氧化物燃料電池金屬連接板與硬焊接合件機械特性及應力分析
(Mechanical Properties and Stress Analysis for the Joint of Metallic Interconnect and Braze Sealant in Solid Oxide Fuel Cell)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究目的在探討硬焊填料和金屬連接板間的接合強度及破壞模式,所使用的硬焊填料為核能研究所開發適用於金屬支撐固態氧化物燃料電池的銀基合金,金屬連接板則是使用代號為Crofer 22 H的商用肥粒鐵系不銹鋼。藉由製作兩款三明治接合件試片,分別量測接合件在室溫與750 °C下的剪力及張力強度,並評估接合時間和在750 °C、1000小時熱時效處理對接合件強度的影響。另外,亦建立硬焊封裝多層電池堆的有限元素模型,並求解各階段的熱應力分布。
實驗結果顯示,接合時間30分鐘可以產生較佳的接合件室溫張力強度,並選為後續各項試驗試片之接合時間。1000小時熱時效試片與未時效試片相比較,其張力強度在常溫下降約38.1%,而剪力強度在常溫下降23.8%。1000小時熱時效試片其張力強度與剪力強度在750 °C下與未時效試片相比,其強度相差有限。此乃熱時效處理過程中,部分硬焊密封劑擴散至Crofer 22 H側,並在高溫測試條件下增強了接合件的延展性,以吸收更多的應力,使得時效前後的高溫接合強度並沒有很大的改變。
試片在高溫接合與熱時效處理的過程中,會形成一氧化層 (Cr2O3) 主導破壞機制。由破斷面分析結果發現未時效張力試片不管在高溫與室溫環境下,破裂皆發生在硬焊填料與Cr2O3氧化層的介面,偶爾發生在Cr2O3氧化層之間。而熱時效張力試片不管在高溫與室溫環境下,破裂皆發生在Crofer 22 H側的硬焊填料與Cr2O3氧化層的介面。當未時效剪力試片的測試溫度從室溫升至高溫環境,破裂發生的位置從硬焊填料與Crofer 22 H的介面改變至硬焊填料與Cr2O3氧化層的介面。當測試溫度從室溫升至750 °C,時效剪力試片破裂位置從Crofer 22 H側的硬焊填料與Cr2O3氧化層的介面改變至硬焊填料與Ag2CrO4氧化層的介面,並且部份發生在Cr2O3氧化層內部。
由模擬結果得知,本研究中所使用的平板式SOFC電池堆,其PEN板和金屬連接板在各階段的最大等效應力皆小於該材料所能承受的臨界應力;而玻璃陶瓷密封膠在完成組裝階段及電池停機階段的最大等效應力在其邊角處皆有些大於臨界應力;銀基硬焊填料除了在高溫長時間運作階段外,其他階段所產生的最大等效應力值皆大於臨界應力值。
摘要(英) The aim of this study is to investigate the mechanical strength of the braze sealant/metallic interconnect joint. The braze sealant used is a silver-based alloy developed at the Institute of Nuclear Energy Research (INER) for metal-supported solid oxide fuel cell (MS-SOFC). The metallic interconnect used is a commercial ferrite stainless steel (Crofer 22 H). Two types of sandwich-like joint specimens are made to determine the shear and tensile joint strength at room temperature (RT) and 750 °C. The effects of bonding time in the joining process and thermal aging treatment (1000 h at 750 °C) on the joint strength are also investigated. In addition, a finite element model for a planar SOFC stack is also established to solve the thermal stress distribution at different stages.
Experimental results indicate that a bonding time of 30 min can produce better tensile strength of the joint at RT, and it is thus selected as the bonding time for each specimen used in the subsequent tests. After 1000-h thermal aging, the tensile and shear strength is decreased by 38.1% and 23.8% at RT, respectively, compared to the unaged counterparts. The tensile strength and shear strength of the 1000 h-aged specimens tested at 750 °C are comparable to the counterparts of the unaged specimens. The braze sealant formed on the Crofer 22 H side after thermal aging enhances the ductility of the joint under mechanical loading at high temperature such that the joint strength is not significantly reduced at 750 °C as compared to the unaged condition.
During the process of bonding and thermal aging treatment, an oxide layer (Cr2O3) is formed and associated with the failure mechanism. Fractography analysis reveals that regardless of testing temperature, fracture of the unaged tensile specimens occurs at the interface between the braze sealant and the Cr2O3 oxide layer and occasionally within the Cr2O3 oxide layer. For the 1000-h aged tensile specimens tested at both 750 °C and RT, cracking occurs at the interface between the braze sealant on the Crofer 22 H side and the Cr2O3 oxide layer. When the testing temperature of the unaged shear specimens is increased from RT to 750 °C, the location of rupture changes from the interface between the braze sealant and Crofer 22 H to the interface between the braze sealant and the Cr2O3 oxide layer. The fracture path of the aged shear specimens changes from the interface between the braze sealant on the Crofer 22 H side and the Cr2O3 oxide layer at RT to the interface between the braze sealant and the Ag2CrO4 oxide layer or partly to the interior of the Cr2O3 oxide layer at 750 °C.
Simulation results indicate the maximum equivalent stress in cell assembly and interconnect/frame at each stage of the SOFC operation conditions is less than the critical value. However, the maximum equivalent stress in glass-ceramic sealant at the after-assembly and shutdown stages is greater than the critical value, which occurs at the corners of the bonding region. The maximum equivalent stress in the brazing filler at all stages is greater than the critical stress except at the long-term high-temperature operation stage.
關鍵字(中) ★ 金屬支撐型固態氧化物燃料電池
★ 硬焊封裝
★ 機械性質
★ 應力分析
關鍵字(英)
論文目次 TABLE OF CONTENTS

Page
LIST OF TABLES VIII
LIST OF FIGURES X
1. INTRODUCTION 1
1.1 Solid Oxide Fuel Cell 1
1.2 Braze Sealant 4
1.3 Thermal Stress Analysis 8
1.4 Purpose 11
2. EXPERIMENTAL PROCEDURES 13
2.1 Materials and Specimen Preparation 13
2.2 Mechanical Test 16
2.3 Microstructural Analysis 17
3. NUMERICAL SIMULATION 18
3.1 Finite Element Model 18
3.2 Material Properties 20
3.3 Analysis Procedure and Temperature Profile 23
3.4 Failure Criteria 26
4. RESULTS AND DISCUSSION 28
4.1 Effect of Bonding Time on Joint Strength 28
4.2 Mechanical Strength of Unaged Joint 34
4.2.1 Tensile strength 34
4.2.2 Shear strength 45
4.3 Mechanical Strength of Aged Joint 52
4.3.1 Tensile strength 52
4.3.2 Shear strength 69
4.4 Thermal Stress in pSOFC Stack with Brazing Seal 83
4.4.1 After-assembly stage 83
4.4.2 Operation stage (start-up) 84
4.4.3 Operation stage (1,000 h, 10,000 h, and 40,000 h) 84
4.4.4 Shutdown stage 85
5. CONCLUSIONS 93
REFERENCES 95
參考文獻 REFERENCES
1. K. Gurbinder, Solid Oxide Fuel Cell Components: Interfacial Compatibility of SOFC Glass Seals, Springer, New York, pp. 85-160, 2016.
2. Z. J. Huang, Fuel Cell, Chuan Hwa Book Co., Taipei, 2003.
3. X.-V. Nguyen, C.-T. Chang, G.-B. Jung, S.-H. Chan, W.-T. Lee, S.-W. Chang, and I. C. Kao, “Study of Sealants for SOFC,” International Journal of Hydrogen Energy, Vol. 41, pp. 21812-21819, 2016.
4. S. Le, K. Sun, N. Zhang, M. An, D. Zhou, J. Zhang, and D. Li, “Novel Compressive Seals for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 161, pp. 901-906, 2006.
5. A. G. Sabato, G. Cempura, D. Montinaro, A. Chrysanthou, M. Salvo, E. Bernardo, M. Secco, and F. Smeacetto, “Glass-Ceramic Sealant for Solid Oxide Fuel Cells Application: Characterization and Performance in Dual Atmosphere,” Journal of Power Sources, Vol. 328, pp. 262-270, 2016.
6. S. Hui, D. Yang, Z. Wang, S. Yick, C. Dec`es-Petit, W. Qua, A. Tuck, R. Maric, and D. Ghosha, “Metal-Supported Solid Oxide Fuel Cell Operated at 400-600 oC,” Journal of Power Sources, Vol. 167, pp. 336-339, 2007.
7. T. Klemensoa, J. Nielsena, P. Blennowa, A. H. Perssona, T. Stegka, B. H. Christensenb, and S. Sonderby, “High Performance Metal-Supported Solid Oxide Fuel Cells with Gd-Doped Ceria Barrier Layers,” Journal of Power Sources, Vol. 196, pp. 9459-9466, 2011.
8. P. Blennow, J. Hjelm, T. Klemenso, S. Ramousse, A. Kromp, A. Leonide, and A. Weber, “Manufacturing and Characterization of Metal-Supported Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 196, pp. 7117-7125, 2016.
9. M. Brandner, M. Bram, J. Froitzheim, H. P. Buchkremer, and D. Stöver, “Electrically Conductive Diffusion Barrier Layers for Metal-Supported SOFC,” Solid State Ionics, Vol. 179, pp. 1501-1504, 2008.
10. E. Sarasketa-Zabala, L. Otaegi, L. M. Rodriguez-Martinez, M. A. Alvarez, N. Burgos, F. Castro, and I. Villarreal, “High Temperature Stability of Porous Metal Substrates under Highly Humidified Hydrogen Conditions for Metal Supported Solid Oxide Fuel Cells,” Solid State Ionics, Vol. 222, pp. 16-22, 2012.
11. M. C. Tucker, “Progress in Metal-Supported Solid Oxide Fuel Cells: A Review,” Journal of Power Sources, Vol. 195, pp. 4570-4582, 2010.
12. J. W. Fergus, “Sealants for Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 147, pp. 46-57, 2005.
13. R. Kiebach, K. Engelbrecht, L. Grahl-Madsen, B. Sieborg, M. Chen, J. Hjelm, K. Norrman, C. Chatzichristodoulou, and P. V. Hendriksen, “An Ag Based Brazing System with a Tunable Thermal Expansion for the Use as Sealant for Solid Oxide Cells,” Journal of Power Sources, Vol. 315, pp. 339-350, 2016.
14. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,” Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
15. K.-L. Lin, M. Singh, R. Asthana, and C.-H. Lin, “Interfacial and Mechanical Characterization of Yttria-Stabilized Zirconia (YSZ) to Stainless Steel Joints Fabricated Using Ag-Cu-Ti Interlayers,” Ceramics International, Vol. 40, pp. 2063-2071, 2014
16. S. Le, Z. Shen, X. Zhu, X. Zhou, Y. Yan, K. Sun, N. Zhang, Y. Yuan, and Y. Mao, “Effective Ag–CuO Sealant for Planar Solid Oxide Fuel Cells,” Journal of Alloys and Compounds, Vol. 496, pp. 96-99, 2010.
17. B. Kuhn, E. Wessel, J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Effect of Isothermal Aaging on the Mechanical Performance of Brazed Ceramic/Metal Joints for Planar SOFC-Stacks,” International Journal of Hydrogen Energy, Vol. 35, pp. 9158-9165, 2010.
18. H. Apfel, M. Rzepka, H. Tu, and U. Stimming, “Thermal Start-up Behaviour and Thermal Management of SOFC′s,’’ Journal of Power Sources, Vol. 154, pp. 370-378, 2006.
19. G. Anandakumar, N. Li, A. Verma, P. Singh, and J.-H. Kim, “Thermal Stress and Probability of Failure Analyses of Functionally Graded Solid Oxide Fuel Cells,’’ Journal of Power Sources, Vol. 195, pp. 6659-6670, 2010.
20. Y. Wang, W. Jiang, Y. Luo, Y. Zhang, and S.-T. Tu, “Evolution of Thermal Stress and Failure Probability During Reduction and Re-Oxidation of Solid Oxide Fuel Cell,’’ Journal of Power Sources, Vol. 371, pp. 65-76, 2017.
21. C. Wang, J. Yang, W. Huang, T. Zhang, D. Yan, J. Pu, B. Chi, and J. Li, “Numerical Simulation and Analysis of Thermal Stress Distributions for a Planar Solid Oxide Fuel Cell Stack with External Manifold Structure,’’ International Journal of Hydrogen Energy, Vol. 22, pp. 20900-20910, 2018.
22. L. Liu, G.-Y. Kim, and A. Chandra, “Modeling of Thermal Stresses and Lifetime Prediction of Planar Solid Oxide Fuel Cell under Thermal Cycling Conditions,’’ Journal of Power Sources, Vol. 195, pp. 2310-2318, 2010.
23. C. Schluckner, V. Subotić, S. Preißl, and C. Hochenauer, “Numerical Analysis of Flow Configurations and Electrical Contact Positions in SOFC Single Cells and Their Impact on Local Effects,’’ International Journal of Hydrogen Energy, Vol. 44, pp. 1877-1895, 2019.
24. M. Fardadi, D. F. Mclarty, and F. Jabbari, “Investigation of Thermal Control for Different SOFC Flow Geometries,’’ Applied Energy, Vol. 178, pp. 43-55, 2016.
25. M. Xu, T. S. Li, M. Yang, M. Andersson, I. Fransson, T. Larsson, and B. Sundén, “Modeling of an Anode Supported Solid Oxide Fuel Cell Focusing on Thermal Stresses,’’ International Journal of Hydrogen Energy, Vol. 41, pp. 14927-14940, 2016.
26. A. Selimovic, M. Kemm, T. Torisson, and M. Assadi, “Steady State and Transient Thermal Stress Analysis in Planar Solid Oxide Fuel Cells,’’ Journal of Power Sources, Vol. 145, pp. 463-469, 2005.
27. K. S. Weil and B. J. Koeppel, “Comparative Finite Element Analysis of the Stress–Strain States in Three Different Bonded Solid Oxide Fuel Cell Seal Designs,’’ Journal of Power Sources, Vol. 180, pp. 343-353, 2008.
28. K. Weil and B. Koeppel, “Thermal Stress Analysis of the Planar SOFC Bonded Compliant Seal Design,’’ International Journal of Hydrogen Energy, Vol. 33, pp. 3976-3990, 2008.
29. T. Zhang, Q. Zhu, and Z. Xie, “Modeling of Cracking of the Glass-Based Seals for Solid Oxide Fuel Cell,’’ Journal of Power Sources, Vol. 188, pp. 177-183, 2009.
30. T. L. Jiang and M.-H. Chen, “Thermal-Stress Analyses of an Operating Planar Solid Oxide Fuel Cell with the Bonded Compliant Seal Design,’’ International Journal of Hydrogen Energy, Vol. 34, pp. 8223-8234, 2009.
31. W. Jiang, S. T. Tu, G. C. Li, and J. M. Gong, “Residual Stress and Plastic Strain Analysis in the Brazed Joint of Bonded Compliant Seal Design in Planar Solid Oxide Fuel Cell,’’ Journal of Power Sources, Vol. 195, pp. 3513-3522, 2010.
32. L.-K. Chiang, H.-C. Liu, Y.-H. Shiu, C.-H. Lee, and R.-Y. Lee, “Thermal Stress and Thermo-Electrochemical Analysis of a Planar Anode-Supported Solid Oxide Fuel Cell: Effects of Anode Porosity,’’ Journal of Power Sources, Vol. 195, pp. 1895-1904, 2010.
33. W. Jiang, Y. Zhang, W. Woo, and S. T. Tu, “Effect of Al2O3 Film on Thermal Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,’’ Journal of Power Sources, Vol. 196, pp. 10616-10624, 2011.
34. W. Jiang, Y. Zhang, W. Woo, and S. T. Tu, “Three-Dimensional Simulation to Study the Influence of Foil Thickness on Residual Stress in the Bonded Compliant Seal Design of Planar Solid Oxide Fuel Cell,’’ Journal of Power Sources, Vol. 209, pp. 65-71, 2012.
35. C.-K. Lin, T.-T. Chen, Y.-P. Chyou, and L.-K. Chiang, “Thermal Stress Analysis of a Planar SOFC Stack,’’ Journal of Power Sources, Vol. 164, pp. 238-251, 2007.
36. C.-K. Lin, L.-H. Huang, L.-K. Chiang, and Y.-P. Chyou, “Thermal Stress Analysis of Planar Solid Oxide Fuel Cell Stacks: Effects of Sealing Design,’’ Journal of Power Sources, Vol. 192, pp. 515-524, 2009.
37. A. Nakajo, Z. Wuillemin, J. V. Herle, and D. Favrat, “Simulation of Thermal Stresses in Anode-Supported Solid Oxide Fuel Cell Stacks. Part I: Loss of Gas-Tightness, Electrical Contact and Thermal Buckling,’’ Journal of Power Sources, Vol. 193, pp. 216-226, 2009.
38. S. S. Wei, T. H. Wang, and J. S. Wu, “Numerical Modeling of Interconnect Flow Channel Design and Thermal Stress Analysis of a Planar Anode-Supported Solid Oxide Fuel Cell Stack,’’ Energy, Vol. 69, pp. 553-561, 2014.
39. L. Blum, “An Analysis of Contact Problems in Solid Oxide Fuel Cell Stacks Arising from Differences in Thermal Expansion Coefficients,’’ Electrochimica Acta, Vol. 223, pp. 100-108, 2017.
40. R. Clague, A. J. Marquis, and N. P. Brandon, “Finite Element and Analytical Stress Analysis of a Solid Oxide Fuel Cell,’’ Journal of Power Sources, Vol. 210, pp. 224-232, 2012.
41. C. Wang, J. J. Yang, W. Huang, T. Zhang, D. Yan, J. Pu, B. Chi, and J. Li, “Numerical Simulation and Analysis of Thermal Stress Distributions for a Planar Solid Oxide Fuel Cell Stack with External Manifold Structure,” International Journal of Hydrogen Energy, Vol. 43, pp. 20900-20910, 2018.
42. W. Jiang, Y. Zhang, Y. Luo, J. M. Gong, and S. T. Tu, “Creep Analysis of Solid Oxide Fuel Cell with Bonded Compliant Seal Design,’’ Journal of Power Sources, Vol. 243, pp. 913-918, 2013.
43. F. Greco, H. L. Frandsen, A. Nakajo, M. F. Madsen, and J. V. Herle, “Modelling the Impact of Creep on the Probability of Failure of a Solid Oxide Fuel Cell Stack,’’ Journal of the European Ceramic Society, Vol. 34, pp. 2695-2704, 2014.
44. W. Jiang, Y.-C. Zhang, W. Y. Zhang, Y. Luo, W. Woo, and S. T. Tu, “Growth and Residual Stresses in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell: Thickness Design of Window Frame,’’ Materials & Design, Vol. 93, pp. 53-62, 2016.
45. Y.-C. Zhang, W. Jiang, S.-T. Tu, and J.-F. Wen, “Simulation of Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 39, pp. 17941-17951, 2014.
46. Y.-C. Zhang, W. Jiang, S.-T. Tu, J.-F. Wen, and W. Woo, “Using Short-Time Creep Relaxation Effect to Decrease the Residual Stress in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell – A Finite Element Simulation,’’ Journal of Power Sources, Vol. 255, pp. 108-115, 2014.
47. Y. Luo, W. Jiang, Q. Zhang, W. Y. Zhang, and M. Hao, “Effects of Anode Porosity on Thermal Stress and Failure Probability of Planar Solid Oxide Fuel Cell with Bonded Compliant Seal,’’ International Journal of Hydrogen Energy, Vol. 41, pp. 7464-7474, 2016.
48. Y.-C. Zhang, W. Jiang, S.-T. Tu, C.-L. Wang, and C. Chen, “Effect of Operating Temperature on Creep and Damage in the Bonded Compliant Seal of Planar Solid Oxide Fuel Cell,’’ International Journal of Hydrogen Energy, Vol. 43, pp. 4492-4504, 2018.
49. L. Esposito, D. N. Boccaccini, G. P. Pucillo, and H. L. Frandsen, “Secondary Creep of Porous Metal Supports for Solid Oxide Fuel Cells by a CDM Approach,’’ Materials Science and Engineering: A, Vol. 691, pp. 155-161, 2017.
50. X. Fang and Z. Lin, “Numerical Study on the Mechanical Stress and Mechanical Failure of Planar Solid Oxide Fuel Cell,’’ Applied Energy, Vol. 229, pp. 63-68, 2018.
51. R. Clague, A. J. Marquis, and N. P. Brandon, “Time Independent and Time Dependent Probability of Failure of Solid Oxide Fuel Cells by Stress Analysis and the Weibull Method,’’ Journal of Power Sources, Vol. 221, pp. 290-299, 2013.
52. Y.-T. Chiu and C.-K. Lin, “Effects of Nb and W Additions on High-Temperature Creep Properties of Ferritic Stainless Steels for Solid Oxide Fuel Cell Interconnect,” Journal of Power Sources, Vol. 198, pp. 149-157, 2012.
53. L.-W. Huang, C.-K. Liu, Y.-N. Cheng, and R.-Y. Lee, Brazing Material Composition and Manufacturing Method Thereof, ROC Patent No. I634220, 2018.
54. J. Laurencin, G. Delette, F. U. Viretta, and S. D. Iorio, “Creep Behaviour of Porous SOFC Electrodes Measurement and Application to Ni-8YSZ Cermets,” Journal of the European Ceramic Society, Vol. 31, pp. 1741-1752, 2011.
55. B. Sun, R. A. Rudkin, and A. Atkinson, “Effect of Thermal Cycling on Residual Stress and Curvature of Anode‐Supported SOFCs,” Fuel Cells, Vol. 9, pp. 805-813, 2009.
56. https://www.vdm-metals.com/fileadmin/user_upload/Downloads/Data_Sheets/Data_Sheet_VDM_Crofer_22_H.pdf. (accessed on May 5, 2020).
57. Metals Handbook, 10th Ed., Vol. 2, ASM International, Materials Park, OH, pp. 437-441, 1990.
58. W. Koster, “The Temperature Dependence of the Elasticity Modulus of Pure Metals,” Zeitschrift fur Metallkunde, Vol. 39, pp. 1-9, 1948.
59. P. Hidnert, “Thermal Expansion of Some Nickel Alloys,” Journal of Research of the National Bureau of Standards, Vol. 58, pp. 89-92, 1957.
60. J.-H. Yeh, “Analysis of High-Temperature Mechanical Durability for the Joint of Glass Ceramic Sealant and Metallic Interconnect for Solid Oxide Fuel Cell,” M.S. Thesis, National Central University, 2011.
61. C.-K. Liu, R.-Y. Lee, K.-C. Tsai, S.-H. Wu, and K.-F. Lin, “Characterization and Performance of a High-temperature Glass Sealant for Solid Oxide Fuel Cell,” Ceramic Engineering and Science Proceedings, Vol. 35, pp. 65-75, 2015.
62. A. Kaletsch, A. Bezold, E. M. Pfaff, and C. Broeckmann, “Effects of Copper Oxide Content in AgCuO Braze Alloy on Microstructure and Mechanical Properties of Reactive-Air-Brazed Ba0.5Sr0.5Co0.8Fe0.2O3-δ (BSCF),” Journal of Ceramic Science and Technology, Vol. 3, pp. 95-104, 2012.
63. N. E. Dowling, Mechanical Behavior of Materials, 3rd Ed., Pearson Education, Inc., New Jersey, USA, pp. 813-816, 2007.
64. J. Weertman and P. Shahinian, “Creep of Polycrystalline Nickel,” Journal of Metals, Vol. 8, p. 1224, 1956.
65. C.-K. Lin, K.-L. Lin, J.-H. Yeh, W.-H. Shiu, C.-K. Liu, and R.-Y. Lee, “Aging Effects on High-Temperature Creep Properties of a Solid Oxide Fuel Cell Glass-Ceramic Sealant,” Journal of Power Sources, Vol. 241, pp. 12-19, 2013.
66. K. S. Weil, J. E. Deibler, J. S. Hardy, D. S. Kim, G.-G. Xia, L. A. Chick, and C. A. Coyle, “Rupture Testing as a Tool for Developing Planar Solid Oxide Fuel Cell Seals,” Journal of Materials Engineering and Performance, Vol. 13, pp. 316-326, 2004.
67. J. Malzbender, R. W. Steinbrech, and L. Singheiser, “Failure Probability of Solid Oxide Fuel Cells,” in Advances in Solid Oxide Fuel Cells, edited by N. P. Bansal, D. Zhu, and W. M. Kriven, Wiley, USA, pp. 293-298, 2005.
68. P. Kofstad and R. Bredesen, “High Temperature Corrosion in SOFC Environments,” Solid State lonics, Vol. 52, pp. 69-75, 1992.
69. J. W. Fergus, “Metallic Interconnects for Solid Oxide Fuel Cells,” Materials Science and Engineering A, Vol. 397, pp. 271-283, 2005.
70. L. Conceição, L. Dessemond, E. Djurado, and E.N.S. Muccillo, “La0.7Sr0.3MnO3-δ Barrier for Cr2O3-Forming SOFC Interconnect Alloy Coated by Electrostatic Spray Deposition,” Surface & Coatings Technology, Vol. 254, pp. 157-166, 2014.
71. J. C. W. Mah, A. Muchtar, M. R. Somalu, and M. J. Ghazali, “Metallic Interconnects for Solid Oxide Fuel Cell: A Review on Protective Coating and Deposition Techniques,” International Journal of Hydrogen Energy, Vol. 42, pp. 9219-9229, 2017.
72. T. Sudiro, D. Aryanto, A. S. Wismogroho, B. Hermanto, H. Izzuddin, and R. Pratama, “High Temperature Oxidation Behavior of Fe-Cr Steel in Air at 1000-1200 K,” Atom Indonesia, Vol. 44, pp. 23-29, 2018.
73. B. Huaa, J. Pua, F. Lub, J. Zhangb, B. Chia, and L. Jian, “Development of a Fe-Cr Alloy for Interconnect Application in Intermediate Temperature Solid Oxide Fuel Cells,” Journal of Power Sources, Vol. 195, pp. 2782-2788, 2010.
74. X. Si, J. Cao, I. Ritucci, B. Talic, J. Feng, and R. Kiebach, “Enhancing the Long-Term Stability of Ag Based Seals for Solid Oxide Fuel/Electrolysis Applications by Simple Interconnect Aluminization,” International Journal of Hydrogen Energy, Vol. 44, pp. 3063-3074, 2019.
75. H. W. Abernathy, E. Koep, C. Compson, Z. Cheng, and M. Liu, “Monitoring Ag-Cr Interactions in SOFC Cathodes Using Raman Spectroscopy,” The Journal of Physical Chemistry C, Vol. 112, pp. 13299-13303, 2008.
76. S. W. Sofie, P. Gannon, and V. Gorokhovsky “Silver-Chromium Oxide Interactions in SOFC Environments,” Journal of Power Sources, Vol. 191, pp. 465-472, 2009.
指導教授 林志光(Chih-Kuang Lin) 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明