博碩士論文 107323025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.226.166.156
姓名 張棋(Chi Jhang)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 空調壓縮機干涉配合應力與優化分析
(Stress Analysis and Optimization for Interference Fitting in Air-Conditioning Compressor)
相關論文
★ 晶圓針測參數實驗與模擬分析★ 車銑複合加工機床面結構最佳化設計
★ 精密空調冷凝器軸流風扇葉片結構分析★ 第四代雙倍資料率同步動態隨機存取記憶體連接器應力與最佳化分析
★ PCB電性測試針盤最佳鑽孔加工條件分析★ 鋰-鋁基及鋰-氮基複合儲氫材料之製程開發及研究
★ 合金元素(錳與鋁)與球磨處理對Mg2Ni型儲氫合金放電容量與循環壽命之影響★ 鍶改良劑、旋壓成型及熱處理對A356鋁合金磨耗腐蝕性質之影響
★ 核電廠元件疲勞壽命模擬分析★ 可撓式OLED封裝薄膜和ITO薄膜彎曲行為分析
★ MOCVD玻璃承載盤溫度場分析★ 不同環境下之沃斯回火球墨鑄鐵疲勞裂縫成長行為
★ 不同環境下之Custom 450不銹鋼腐蝕疲勞性質研究★ AISI 347不銹鋼腐蝕疲勞行為
★ 環境因素對沃斯回火球墨鑄鐵高週疲勞之影響★ AISI 347不銹鋼在不同應力比及頻率下之腐蝕疲勞行為
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 在迴轉式壓縮機組裝過程中,需利用熱套配合的方式將定子固定於外殼鋼管內,而裝配過程所產生的壓應力不僅會導致定子內側產生徑向位移,減小定子與轉子之間的間隙,進而可能產生定子撞擊轉子的現象,還會增大定子之鐵損,因而降低壓縮機的效率。本研究之目的在於建立一套定子與外殼干涉之ANSYS有限元素分析模型,並考慮透過流通孔的設計來降低壓應力值。此研究包含兩種機型。首先,使用第一種機型,進行全實體與板殼元素模型之模擬結果比較,探討兩種模型之間的關聯性,且進行兩種模型之收斂性分析,並確認是否會產生塑性變形及撞擊的可能,隨後將全實體元素模型獲得之定子徑向應變與干涉實驗結果進行比對,用以驗證模型之有效性。最後,分別利用方形及圓形流通孔,進行第二種機型之田口法優化分析,用以找出最適設計方案減小定子之最大等效應力。
由第一型模擬結果顯示,全實體與板殼元素模型之定子各層等效應力、內側徑向位移以及定子與外殼鋼管間之徑向內力三項數值,在定子上下20層的數值變化劇烈,而中間層的結果較為穩定。比較兩種元素模型之分析結果顯示,兩者數值雖有差異,但趨勢相同。模擬與實驗量測結果比較顯示,兩者之定子徑向殘留應變值極為相近,驗證本研究有限元素模型之有效性。由第二型之田口法優化分析結果顯示,方形流通孔比原形流通孔,更能有效減小定子之最大等效應力,尤其使用長6.0 mm、寬1.8 mm、距離中心點65 mm、與x 軸夾角37 之優化設計參數能降低約 40 % 之定子最大等效應力,而圓形流通孔最佳設計組合之最大等效應力與原模型並無太大差異。
摘要(英) The objective of this study is to establish effective finite element method (FEM) models for application in analysis of interference fitting of motor stator and outer shell of a rotary compressor. Two types of models are employed in this study. Firstly, Types I compressor is used to evaluate the effectiveness of the FEM model using solid and plate elements. It also needs to assess whether rub impact and plastic deformation occur or not. The simulation of Type I using solid elements is also compared with the experimental measurements to validate the FEM model. Optimization analysis of Taguchi method is conducted for Type II compressor to find the optimal vent design in reducing the maximum von-Mises stress of the stator.
Simulation results of Type I indicate that values of von-Mises equivalent stress, radial displacement of inner surface, and internal radial force of both solid and plate-element models change steeply in the top and bottom 20 layers and then become smaller and stable in the middle layers. Although the simulation results show certain difference in values between the two element types employed, the trends are almost the same. The simulation exhibits good agreement with experimental measurements of stator deformation during shrink fitting such that the effectiveness of the FEM model developed is validated. The optimization analysis of Taguchi method indicates that rectangular vents are more effective in reducing the maximum equivalent stress of the stator than circular vents. The optimal design with a combination of 6.0-mm length, 1.8-mm width, 37 of radial angle from x axis, and 65-mm distance from the center of stator for rectangular vents can reduce the maximum von-Mises stress of the stator by 40 %. The optimized design of circular vents has limited effect in reducing the maximum von-Mises stress.
關鍵字(中) ★ 迴轉式壓縮機
★ 干涉配合
★ 應力分析
★ 優化分析
關鍵字(英)
論文目次 LIST OF TABLES VI
LIST OF FIGURES VII
1. INTRODUCTION 1
1.1 Rotary Compressor for Household Air Conditioning 1
1.2 Interference Fit 3
1.3 Relationship Between Magnetic Permeability and Compressive Stress 7
1.4 Taguchi Method 21
1.5 Purpose 24
2. FINITE ELEMENT METHOD MODELING 26
2.1 Finite Element Model 26
2.2 Material Properties 28
2.3 Interference and Boundary Conditions 30
2.4 Taguchi Method Analysis 33
3. EXPERIMENT 38
3.1 Experimental Setup 38
3.2 Experimental Procedures 41
4. RESULTS AND DISCUSSION 44
4.1 Simulation Results of Type I Compressor 44
4.1.1 Simulation results using solid elements 44
4.1.2 Simulation results using plate elements 49
4.1.3 Comparison of using solid elements and plate elements 53
4.2 Experimental Results of Type I Compressor 55
4.3 Simulation Results of Type II Compressor 56
4.4 Optimization Analysis of Type II Compressor Using Taguchi Method 61
4.4.1 Optimization analysis for rectangular vents 61
4.4.2 Optimization analysis for circular vents 66
5. CONCLUSIONS 70
REFERENCES 72
參考文獻 1. Wikipedia, Air Conditioning, https://en.wikipedia.org/wiki/Air_conditioning, accessed on January 20, 2020.
2. Wikipedia, Willis Carrier, https://en.wikipedia.org/wiki/Willis_Carrier, accessed on January 20, 2020.
3. Smwac, How an Air Conditioner Compressor Works, https://smwac.net/hvac-knowledge/how-an-air-conditioner-compressor-works/, accessed on January 20, 2020.
4. Bright Hub Engineering, Types of Refrigeration and Air Conditioning Compressors, https://www.brighthubengineering.com/hvac/51468-types-of-refrigeration-and-air-conditioning-compressors/#imgn_4, accessed on January 20, 2020.
5. Rechi Co. Ltd., Internal Technical Data, 2016.
6. Wikipedia, Engineering Fit, https://en.wikipedia.org/wiki/Engineering_fit, accessed on March 5, 2020.
7. Misumiusa, Engineering Fit, https://blog.misumiusa.com/shaft-hole-tolerances-for-clearance-interference-fits/, accessed on March 5, 2020.
8. Extrudesign, Engineering Fit, https://extrudesign.com/types-of-fits-in-engineering/, accessed on March 5, 2020.
9. Wikipedia, Interference fit, https://en.wikipedia.org/wiki/Interference_fit, accessed on March 5, 2020.
10. K. Fujisaki, R. Hirayama, T. Kawachi, S. Satou, C. Kaidou, M. Yabumoto, and T. Kubota, “Motor Core Iron Loss Analysis Evaluating Shrink Fitting and Stamping by Finite-Element Method,” IEEE Transactions on Magnetics, Vol. 43, No. 5, pp. 1950-1954, 2007.
11. F. Chu and Z. Zhang, “Bifurcation and Chaos in a Rub-Impact Jeffcott Rotor System,” Journal of Sound and Vibration, Vol 210, pp. 1-18, 1998.
12. E. G. Ovy, “Study of Rubbing Phenomenon due to Contact between Rotor and Guide in Rotating machinery and its Minimization,” Master Thesis, Islamic University of Technology, 2012.
13. S. Edwards, A. W. Lees, and M. I. Friswell, “The Influence of Torsion on Rotor/Stator Contact in Rotating Machinery,” Journal of Sound and Vibration, Vol. 225, No. 4, pp. 767-778, 1999.
14. Wikipedia, Core loss, https://en.wikipedia.org/wiki/Magnetic_core#Core_loss, accessed on April 8, 2020.
15. K. Jeong, Z. Ren, H. Yoon, and C.-S. Koh, “Measurement of Stator Core Loss of an Induction Motor at Each Manufacturing Process,” Journal of Electrical Engineering Technology, Vol. 9, pp. 1309-1314, 2014.
16. Y. Hu, X. Zeng, and B. Chen, “Analysis and Optimization of Permanent Synchronous Motor with Shrink Fitting,” Journal of Micromotors, Vol. 49, No. 12, pp. 21-29, 2016. (In Chinese)
17. Z. Wang and M. Yu, “The Analysis of the Influence of Compressive Stress on the Permanent Magnet Synchronous Motor Iron Loss and Improvement,” Proceedings of China Household Electrical Application Association, pp. 669-674, 2016. (In Chinese)
18. K. Fujisaki and S. Satoh, “Numerical Calculations of Electromagnetic Fields in Silicon Steel under Mechanical Stress,” IEEE Transactions on Magnetics, Vol. 40, No. 4, pp. 1820-1825, 2004.
19. K. Yamazaki and Y. Sakurai, “Electromagnetic field Analysis of Aluminum Cage Induction Motors by Considering Mechanical Stress, Temperature Rise, and Building Effect,” 2015 18th International Conference on Electrical Machines and Systems (ICEMS), pp. 1846-1850, 2015.
20. K. Yamazaki and Y. Kato, “Iron Loss Analysis of Interior Permanent Magnet Synchronous Motors by Considering Mechanical Stress and Deformation of Stators and Rotors,” IEEE Transactions on Magnetics, Vol. 50, No. 2, pp. 909-912, 2014.
21. M. Nakano, S. Yamaguchi, Y. Tani, Y. Toide, H. Arita, T. Yoshioka, and C. Fujino, “An Accurate Magnetic Field Analysis for Estimating Motor Characteristics Taking Account of Stress Distribution in the Magnetic Core,” IEEE Transactions on Industry Applications, Vol. 42, No. 3, pp. 668-674, 2006.
22. K. Yamazaki and H. Takeuchi, “Impact of Mechanical Stress on Characteristics of Interior Permanent Magnet Synchronous Motors,” IEEE Transactions on Industry Applications, Vol. 53, No. 2, pp. 963-970, 2017.
23. N. Takahashi and D. Miyagi, “Effect of Stress on Iron Loss of Motor Core,” 2011 IEEE International Electric Machines & Drives Conference (IEMDC), pp. 469-474, 2011.
24. N. Takahashi, H. Morimoto, Y. Yunoki, and D. Miyagi, “Effect of Shrink Fitting and Cutting on Iron Loss of Permanent Magnet Motor,” Journal of Magnetism and Magnetic Materials, Vol. 320, pp. 925-928. 2008.
25. S. Vaez-Zadeh and A. R. Ghasemi, “Design Optimization of Permanent Magnet Synchronous Motors for High Torque Capability and Low Magnet Volume,” Electric Power Systems Research, Vol. 74, pp. 307-313, 2005.
26. C. Verucchi, C. Ruschetti, E. Giraldo, G. Bossio, and J. Bossio, “Efficiency Optimization in Small Induction Motors Using Magnetic Slot Wedges,” Electric Power Systems Research, Vol. 152, pp. 1-8, 2017.
27. N. Soda and M. Enokizono, “Stator Shape Design Method for Improving Power Density in PM Motor,” IEEE Transactions on Magnetics, Vol. 53, No. 11, 9100504, 2017.
28. C. Shi, R. Qu, J. Li, D. Li, and Y. Gao, “Design and Optimization of an Interior Permanent Magnet Machine with Asymmetric Stator Iron Yoke Applied in Rail Transportation,” 2017 IEEE International Electric Machines and Drives Conference (IEMDC), 2017.
29. K. Li, G. Cheng, X. Sun, Z. Yang, and Y. Fan, “Performance Optimization Design and Analysis of Bearingless Induction Motor with Different Magnetic Slot Wedges,” Results in Physics, Vol. 12, pp. 349-356, 2019.
30. Wikipedia, Taguchi Methods, https://en.wikipedia.org/wiki/Taguchi_methods, accessed on April 21, 2020.
31. R. Davis and P. John, “Application of Taguchi-Based Design of Experiments for Industrial Chemical Processes,” Chapter 2 in Statistical Approaches with Emphasis on Design of Experiments Applied to Chemical Processes, InTech, Rijeka, Croatia, 2018.
32. J. A. Ghani, H. Jamaluddin, M. Rohman, and B. M. Deros., “Philosophy of Taguchi Approach and Method in Design of Experiment,” Asian Journal of Scientific Research, Vol. 6, pp. 27-37, 2013.
33. H.-H. Lee, “Experiments with Orthogonal Arrays,” Chapter 3 in Taguchi Methods: Principles and Practices of Quality Design, Gau Lih Book Co. Ltd., Taipei, Taiwan, 2009. (In Chinese)
34. H.-H. Lee, “Measure of Quality,” Chapter 4 in Taguchi Methods: Principles and Practices of Quality Design, Gau Lih Book Co., Taipei, Taiwan, 2009. (In Chinese)
35. R. H. Lochner and J. E. Matar, “Signal-to-Noise Ratio,” Chapter 5 in Designing for Quality: an Introduction to the Best of Taguchi and Western Methods of Statistical Experimental Design, Chapman and Hall, New York, USA, 1990.
36. Y.-C. Ye, “Robust Design I: Taguchi Method,” Chapter 9 in Experimental Design Methods: Optimization of Processes and Products, Wu-Nan Book Inc. Taipei, Taiwan, 2001. (In Chinese)
37. Z.-L. Gaing, Q.-Q. Wang, and J.-A. Chiang, “Optimization of In-wheel PM Motor by Fuzzy-based Taguchi Method,” in The 2010 International Power Electronics Conference, pp. 1312-1316, 2010.
38. S. X. Chen, T. S. Low, and B. Bruhl, “The Robust Design Approach for Reducing Cogging Torque in Permanent Magnet Motors,” IEEE Transactions on Magnetics, Vol. 34, No. 4, pp. 2135-2137, 1998.
39. S.-I. Kim, J.-Y. Lee, Y.-K. Kim, and J.-P. Hong, “Optimization for Reduction of Torque Ripple in Interior Permanent Magnet Motor by Using the Taguchi Method,” IEEE Transactions on Magnetics, Vol. 41, No. 5, pp. 1796-1799, 2005.
40. C.-C. Hwang, L.-Y. Lyu, C.-T. Liu, and P.-L. Li, “Optimal Design of an SPM Motor Using Genetic Algorithms and Taguchi Method,” IEEE Transactions on Magnetics, Vol. 44, No. 11, pp. 4325-4328, 2008.
41. C.-C. Hwang, C.-M. Chang, and C.-T. Liu, “A Fuzzy-Based Taguchi Method for Multiobjective Design of PM Motors,” IEEE Transactions on Magnetics, Vol. 49, No. 5, pp. 2153-2156, 2013.
42. J. Zhuang and K. Chen, Tensile Test Report of 50W600 and SPHC-P, National Central University, Tao-Yuan, Taiwan, 2015.
43. https://perso.uclouvain.be/ernest.matagne/ELEC2311/T2006/NOFP.pdf, accessed on May 21, 2020.
44. Matmatch, SPHC, https://matmatch.com/materials/minfm37144-jis-g3131-grade-sphc-, accessed on May 21, 2020.
45. H.-H. Lee, “Construction of Orthogonal Arrays,” Chapter 7 in Taguchi Methods: Principles and Practices of Quality Design, Gau Lih Book Co., Taipei, Taiwan, 2009. (In Chinese)
46. Internal Technical Data, PI-32 Adhesive for KYOWA strain gages, KYOWA electronic instruments Co., Ltd.
47. H.-H. Lee, “Analysis of Variance,” Chapter 5 in Taguchi Methods: Principles and Practices of Quality Design, Gau Lih Book Co. Ltd., Taipei, Taiwan, 2009. (In Chinese)
指導教授 林志光 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明