參考文獻 |
1. ASM International. Handbook Committee, “Properties and Selection : Irons, Steels, and High-Performance Alloys”, Vol.1, Materials Park, OH : ASM International, 1990.
2. ASM International. Handbook Committee, “Properties and Selection: Nonferrous Alloys and Special-Purpose Materials”, Vol.2, Materials Park, OH : ASM International, 1990.
3. K. H. Huang, J. W. Yeh. “A Study On Multicomponent Alloy Systems containing Equal-Mole Elements”. Department of Materials Science and Engineering. Hsinchu: National Tsing Hua University, 1996.
4. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, S. Y. Chang, “Nanostructure High-Entropy Alloys with Multiple Principle Elements: Novel Alloy Design Concepts and Outcomes”, ADVANCED ENGINEERING MATERIALS, Vol.6, pp.299-303, 2004.
5. J. W. Yeh, “Recent progress in high-entropy alloys”, Ann. Chim.-Sci. Mat. 31 pp.633-648, 2006.
6. B. Cantor, I. T. H. Chang, P. Knight and A. J. B. Vincent, “Microstructural development in equiatomic multicomponent alloys”, Materials Science and Engineering A, Vol.375-377, pp.213-218, 2004.
7. S. Wang, Z. Chen, P. Zhang, K. Zhang, C.L. Chena, B.L. Shen, “Influence of Al content on high temperature oxidation behavior of AlxCoCrFeNiTi0.5 high entropy alloys” Vacuum Vol.163, pp.263-268, 2019.
8. M. Choi, I. Ondicho, N. Park, N. Tsuji, “Strength–ductility balance in an ultrafine-grained non-equiatomic Fe50(CoCrMnNi)50 medium-entropy alloy with a fully recrystallized microstructure”, Journal of Alloys and Compounds, Vol.780, pp.959-966, 2019.
9. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw. “Refractory high-entropy alloys”, Intermetallics, Vol.18, pp.1758-1765, 2010.
10. L. Lilensten, J. Couzinié, L. Perrière, J. Bourgon, N. Emery and I. Guillot, “New structure in refractory high-entropy alloys”, Materials Letters, Vol.132, pp.123-125, 2014
11. A. Takeuchi, A. Inoue, “Quantitative evaluation of critical cooling rate for metallic glasses”, Materials Science and Engineering: A, Vol.304-306, pp.446-451, 2001.
12. A. R. Miedema, P. F. de Châtel and F. R. de Boer. “Cohesion in alloys — fundamentals of a semi-empirical model”, Physica B+C, Vol.100, pp.1-28, 1980.
13. Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen and P. K. Liaw. “Solid-Solution Phase Formation Rules for Multi-component Alloys”, Advanced Engineering Materials, Vol.10, pp.534-538, 2008.
14. X. Yang and Y. Zhang. “Prediction of high-entropy stabilized solid-solution in multi-component alloys”, Materials Chemistry and Physics, Vol. 132, pp.233-238, 2012.
15. S. GUO, C. T. LIU, “Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase”, Progress in Natural Science: Materials International, Vol.21, pp.433-446, 2011.
16. D. Gaskell, “Introduction to the thermodynamics of materials”, 3rd ed, Washington: Taylor & Francis, pp. 80-84, 1995.
17. R. Swalin, “Thermodynamics of solids”, 2nd ed, New York: Wiley, pp.35-41, 1972.
18. J. W. Yeh. “高熵合金的發展”, 華岡工程學報, Vol.27, pp.1-18, 2011.
19. Q. H, Y. Yan, “On Lattice Distortion in High Entropy Alloys”, Frontiers in Materials, Vol. 5, Article 42, 2018.
20. C. R. LaRosa, M. Shih, C. Varvenne, M. Ghazisaeidi, “Solid solution strengthening theories of high-entropy alloys”, Materials Characterization, Vol.151, pp.130-137, 2019.
21. J. W. Yeh, S. Y. Chang, Y. D. Honga, S. K. Chenc and S. J. Lin, “Anomalous decrease in X-ray diffraction intensities of Cu–Ni–Al–Co–Cr–Fe–Si alloy systems with multi-principal elements”, Materials Chemistry and Physics, Vol.103, pp.41-46, 2007.
22. K. Y. Tsai, M. H. Tsai, J. W. Yeh, “Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys”, Acta Materialia, Vol.61, pp.4887-4897, 2013.
23. S. Ranganathan, “Alloyed pleasures: Multimetallic cocktails”, CURRENT SCIENCE, Vol.85, pp.1404-1406, 2003.
24. L. S. Zhang, G. L. Ma, L. C. Fu and J. Y. Tian, “Recent Progress in High-entropy Alloys”, Advanced Materials Research, Vol.631-632, pp.227-232, 2013.
25. F. Müller, B. Gorr, H. J. Christ, J. Müller, B. Butz, H. Chen, A. Kauffmann, M. Heilmaier, “On the oxidation mechanism of refractory high entropy alloys”, Corrosion Science, Vol.159, pp.108161, 2019.
26. Y. Zhao, M. Wang, H. Cui, Y. Zhao, X. Song, Y. Zeng, X. Gao, F. Lu, C. Wang, Q. Song, “Effects of Ti-to-Al ratios on the phases, microstructures, mechanical properties, and corrosion resistance of Al2-xCoCrFeNiTix high-entropy alloys”, Journal of Alloys and Compounds, Vol.805, pp.585-596, 2019.
27. H. Wu, S. Huang, C. Zhu, H. Zhu, Z. Xie, “Influence of Cr content on the microstructure and mechanical properties of CrxFeNiCu high entropy alloys”, Progress in Natural Science: Materials International, Available online 17 February 2020.
28. Z. Li, D. Raabe, “Strong and Ductile Non-equiatomic High-Entropy Alloys: Design, Processing, Microstructure, and Mechanical Properties”, JOM, Vol.69, pp.2099–2106, 2017.
29. M. J. Yao, K. G. Pradeep, C. C. Tasan and D. Raabe, “A novel, single phase, non-equiatomic FeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility”, Scripta Materialia, Vol.72-73, pp.5-8, 2014
30. D. C. Ma, M. J. Yao, K. G. Pradeep, C. C. Tasan, H. Springer and D. Raabe, “Phase stability of non-equiatomic CoCrFeMnNi high entropy alloys”, Acta Materialia, Vol.98, pp.288-296, 2015.
31. O. N. Senkov, G.B. Wilks, J.M. Scott, D.B. Miracle, “Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys”, Intermetallics, Vol.19, pp.698-706, 2011.
32. O. N. Senkov, J. M. Scott, S. V. Senkov, D. B. Miracle, C. F. Woodward, “Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy”, Journal of Alloys and Compounds, Vol.509, pp.6043-6048, 2011.
33. O. N. Senkov, S. V. Senkov, D. B. Miracle, C. Woodward, “Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system”, Materials Science and Engineering: A, Vol.565, pp.51-62, 2013.
34. O. N. Senkov, S. V. Senkov, C. Woodward, D. B. Miracle, “Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis”, Acta Materialia, Vol.61, pp.1545-1557, 2013.
35. K. K. Yang, T. C. Yang, C. C. Juan, T. S. Chin, C. W. Tsai, J. W. Yeh, “A light-weight high-entropy alloy Al20Be20Fe10Si15Ti35”, Science China Technological Sciences, Vol.61, pp.184-188, 2018
36. R. Li, J. C. Gao, K. Fan, “Microstructure and Mechanical Properties of MgMnAlZnCu High Entropy Alloy Cooling in Three Conditions” Materials Science Forum, Vol.686, pp.235-241, 2011.
37. R. Li, J. Gao, K. Fan, “Study to Microstructure and Mechanical Properties of Mg Containing High Entropy Alloys”, Materials Science Forum, Vol.650, pp.265-271, 2010.
38. Y. C. Liao, P. S. Chen, C. H. Li, P. H. Tsai, J. S. C. Jang, “Development of Novel Lightweight Dual‐Phase Al‐ Ti‐Cr‐Mn‐V Medium‐Entropy Alloys with High Strength and Ductility”, Entropy, Vol.22, pp.74, 2020.
39. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, Y. Yang, “High-entropy alloy: challenges and prospects”, Materials Today, Vol.19, pp.349-362, 2016.
40. H. Luo, Z. Li, A. M. Mingers, D. Raabe,“Corrosion behavior of an equiatomic CoCrFeMnNi high-entropy alloy compared with 304 stainless steel in sulfuric acid solution”, Corrosion Science, Vol.134, pp.131-139, 2018.
41. R. Feng, M. C. Gao, C. Lee, M. Mathes, T. Zuo, S. Chen, J. A. Hawk, Y. Zhang and P. K. Liaw, “Design of Light-Weight High-Entropy Alloys”, Entropy, Vol.18, p.333, 2016. |