博碩士論文 107323035 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:50 、訪客IP:18.226.34.215
姓名 朱家銓(Chia-Chuan Chu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 雷射積層製造用高韌性鐵基金屬玻璃粉末與其工件性質之研究
(Fe-based metallic glass powder with high fracture toughness preparation and additive manufacturing workpiece properties analysis)
相關論文
★ 鋯基與鋯銅基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質提升之研究★ 非 晶 質 合 金 手 術 刀 與 非 晶 質 合 金 鍍 膜 手 術 刀 之 銳 利 度 研 究
★ 以急冷旋鑄法及機械冶金法製備Zn4Sb3熱電塊材及其熱電性質之研究★ 添加Ti顆粒對MgZnCa非晶質合金之機械性質研究
★ 不同製程對鋯基非晶質合金破裂韌性影響之研究★ 硼碳元素對鐵基非晶質鋼材玻璃形成能力、熱性質及切削性質影響之研究
★ 鋯銅基塊狀金屬玻璃複材和鋯基塊狀金屬 多孔材之製作及其性質分析之研究★ 添加鉭顆粒與球狀鈦合金對鎂鋅鈣非晶質合金機械性質影響之研究
★ 高速火焰熔射製備鐵基非晶質合金塗層及其耐磨耗性與抗腐蝕性之研究★ 不同製程對鋯-銅-鋁非晶質合金內析出ZrCu B2相分布及其機械性質影響之研究
★ 以塊狀金屬玻璃和其複材製作骨科鑽頭及其鑽孔能力之研究★ 鋯基塊狀金屬玻璃與金屬玻璃鍍膜 手術刀切削耐久度之研究
★ 利用急冷旋鑄及真空熱壓製備β-Zn4Sb3 奈米/微 米晶塊材之熱電性質探討★ 無鎳鋯基及鈦基金屬玻璃生物相容性之研究
★ 以鐵基金屬玻璃複材或金屬玻璃鍍膜製作手術用取皮刀並進行模擬切削性能之研究★ 探討不同結晶率對鋯鋁鈷塊狀非晶質合金機械性質之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 本研究使用鐵基金屬玻璃Fe-Cr-Mo-C-B-Co-Al 七元合金成分,以真空
感應高週波爐將之融煉成合金鑄錠,委由工研院以氣噴粉體法(Gas
atomization)製備成球型粉體,將每一爐次粉體經搖篩機篩分,再以X 光繞
射確認各區間粒徑粉體之非晶性與析出相。根據結果顯示粒徑在90 μm 以
下皆保有析出相α-Fe 組織以及非晶態,而當粒徑在25 μm 以下時為全非
晶結構。利用EPMA 確認粉體成分,運用掃描式電子顯微鏡觀測其粉體外
觀,粉體形貌為球型且截面皆為實心構造,進行積層製造可型性的評估。
積層製造工件製備可行性的評估上,使用粒徑區間25-53 μm 之粉體進
行面型燒結測試與方塊燒結測試,並對試片進行性質分析。以雷射積層製
造將7 組不同雷射功率與掃描速率組合進行面型燒結測試,成功燒結出尺
寸為10 mm x 10 mm x 3 mm 之方塊,方塊1(60 W-150 mm/s)、4(80 W-150
mm/s)、6(60 W-110 mm/s)外觀較為完整,故以此3 組參數進行主要分析。
面燒結方塊經X 光繞射分析確認其非晶性,硬度也可高達1273 Hv。
雷射積層製造鐵基金屬玻璃試片之磨耗率(1.06x10-6 mm3N-1m-1)和商
用不鏽鋼SS420(7.52x10-6 mm3N-1m-1)與SKDII (2.83x10-6 mm3N-1m-1)相比,
雷射積層製造鐵基金屬玻璃試片之耐磨耗能力遠高於不鏽鋼並和SKDII 相
當。雷射積層製造鐵基金屬玻璃試片的腐蝕電流與腐蝕電壓為1.61x10-7
(A/cm2)和-0.252 V,雷射積層製造鐵基金屬玻璃試片其抗腐蝕能力遠高於
模具鋼 SKDII,並與商用的不鏽鋼 SS420 相當,因此鐵基金屬玻璃粉體經
積層製造作為MIM 模具後勢看俏。
摘要(英) The alloy composition of Fe-Cr-Mo-C-B-Co-Al 7 components Fe-based
alloy was selected as the master alloy and prepared by vacuum induction melting.
Then the alloy ingots were re-melted and fabricated into spherical alloy powder
by gas atomization process in the Material and Chemical Laboratories, Industrial
Technology Research Institute (ITRI, Hsinchu). After size sieving, the Fe-based
alloy powder was characterized its amorphous status by X-ray diffraction (XRD).
The XRD results revealed that a broaden peak accompanied the weak crystalline
peaks of α-Fe occurred at the alloy powders with particle size below 90 μm.
Meanwhile, the appearance of all these Fe-based alloy powders present a
spherical shape and a solid cross-section.
7 sets parameters of laser power and scanning rate were obtained from the
results of square laser melting test by microscope observation. Then these 7 sets
parameters were applied to do the cube SLM test. After SLM, the cubes with
dimension 10 mm x 10 mm x 3 mm were successfully made. However, cracks
were found on the surface of most SLM cubes except the cubes made by the
parameters of P60-S150(#1), P80-S150(#4) and P60-S110(#6).
The Fe-based SLM sample shows the minimum wear rate of 1.95x10-6
mm3N-1m-1 among all samples in comparison with SS316 and SS304. The Febased
SLM sample also shows better corrosion resistance than SKDII. This Febased
amorphous alloy powder still have ideal properties after SLM.
關鍵字(中) ★ 鐵基金屬玻璃
★ 氣噴粉體法
★ 積層製造
★ 磨耗測試
★ 抗腐蝕
關鍵字(英) ★ Fe-based bulk metallic glass
★ gas atomization
★ additive manufacturing
★ abrasion test
★ corrosion resistance
論文目次 目錄
中文摘要 .............................................................................................................. I
Abstract ............................................................................................................... II
致謝 ................................................................................................................... III
目錄 ................................................................................................................... IV
表目錄 .............................................................................................................. VII
圖目錄 ............................................................................................................ VIII
第一章 緒論 ...................................................................................................... 1
1-1 金屬玻璃 .............................................................................................. 1
1-2 研究目的與動機 .................................................................................. 2
第二章 文獻回顧 .............................................................................................. 8
2-1 金屬玻璃合金之概述 ............................................................................. 8
2-2 金屬玻璃合金發展 ................................................................................. 8
2-3 金屬玻璃合金設計與製作 ................................................................... 10
2-3-1 實驗歸納法則 ................................................................................ 10
2-3-2 金屬玻璃合金製程 ........................................................................ 11
2-4 金屬玻璃合金特性 ............................................................................... 12
2-4-1 熱力學性質 .................................................................................... 12
2-4-2 特徵溫度 ........................................................................................ 13
2-4-3 玻璃形成能力 (GFA, glass forming ability) ................................ 14
2-5 氣噴粉之粉體製備 ............................................................................... 15
2-6 積層製造 ............................................................................................... 16
2-6-1 選擇性雷射燒結(SLM,selective laser melting) ......................... 17
2-6-2 鐵基金屬玻璃粉體應用於積層製造 ............................................ 18
2-7 金屬玻璃合金之機械性質與檢測方法 ............................................... 19
2-7-1 維克式(Vickers)硬度量測 ............................................................. 19
2-7-2 材料之破裂韌性 ............................................................................ 20
V
第三章 實驗步驟與方法 ................................................................................ 27
3-1 實驗目的及流程 ................................................................................... 27
3-2 氣噴粉體之合金製備 ........................................................................... 27
3-2-1 合金配製 ........................................................................................ 27
3-2-2 合金熔煉 ........................................................................................ 28
3-2-3 粉體製備(氣噴粉體法) ................................................................ 28
3-2-4 粉體粒徑篩選 ................................................................................ 28
3-3 金屬玻璃粉體之性質分析 ................................................................... 29
3-3-1 XRD 繞射分析 .............................................................................. 29
3-3-2 成分分析(高解析度場發射電子微探儀(FE-EPMA)) ................. 29
3-3-3 粉體之表面&截面形貌之SEM 觀察 .......................................... 30
3-3-4 熱性質分析 .................................................................................... 30
3-4 積層製造 ............................................................................................... 30
3-4-1 面型燒結測試 ................................................................................ 31
3-4-2 方塊燒結測試 ................................................................................ 31
3-5 積層製造工件燒結性質分析 ............................................................... 31
3-5-1 積層製造工件之能量密度計算 .................................................... 31
3-5-2 積層製造工件之立體顯微鏡分析 ................................................ 32
3-5-3 X 光繞射分析 .............................................................................. 32
3-5-4 工件緻密度量測 ............................................................................ 32
3-5-5 維式硬度量測 ................................................................................ 33
3-5-6 破裂韌性量測 ................................................................................ 33
3-5-7 磨耗測試(Wear resistance) ............................................................ 33
3-5-8 腐蝕測試(動態極化法) ................................................................ 34
3-5-9 熱性質分析 .................................................................................... 35
第四章 結果與討論 ........................................................................................ 48
4-1 粉末性質分析 ....................................................................................... 48
4-1-1 X-ray 繞射分析............................................................................... 48
VI
4-1-2 粉體形貌之觀察 ............................................................................ 49
4-1-3 EPMA 成分分析 ............................................................................. 49
4-1-4 非恆溫熱性質分析 ........................................................................ 50
4-2 粉體雷射積層製造測試分析 ............................................................... 50
4-2-1 面型燒結試片之立體顯微鏡觀察 ................................................ 50
4-2-2 方塊燒結測試 ................................................................................ 51
4-3 塊材性質分析 ....................................................................................... 51
4-3-1 X 光繞射分析 ................................................................................. 51
4-3-2 緻密度量測 .................................................................................... 51
4-3-3 熱性質分析 .................................................................................... 52
4-3-4 維克氏硬度分析 ............................................................................ 52
4-3-5 破裂韌性量測 ................................................................................ 52
4-3-6 磨耗測試 ........................................................................................ 53
4-3-7 腐蝕性質分析 ................................................................................ 54
第五章 結論 ................................................................................................... 93
第六章 參考文獻 ............................................................................................. 95
VII
參考文獻 [1] A. C. Lund, " Topological and chemical arrangement of binary alloys
during severe deformation ", Journal of Applied Physics, Vol. 95 pp.4815-
4822 (2004).
[2] H. S. Chen , H.J. Leamy, and C. E. Miller, "Preparation of glassy metals",
Ann. Rev. Mater. Sci. 10:363-91 (1980).
[3] Wang, L. and Chao, Y. (2012). Corrosion behavior of
Fe41Co7Cr15Mo14C15B6Y2 bulk metallic glass in NaCl
solution. Materials Letters, 69, pp.76-78.
[4] A. Inoue, K. Hashimoto, Amorphous and Nanocrystalline Materials,
Springer, (2001).
[5] A. Inoue, "Stabilization of Metallic Supercooled Liquid and Bulk
Amorphous Alloys", Acta Materialia, Vol. 48, pp. 279-306, (2000).
[6] J. Schroers, T. Nguyen, S. O’Keeffe, A. Desai, "Thermoplastic forming of
bulk metallic glass-Applications for MEMS and microstructure fabrication",
Materials Science and Engineering, Vol. A449–451, pp. 898–902, (2007).
[7] Jason Shian-Ching Jang, Pei-Hua Tsai, An-Zin Shiao, Tsung-Hsiung Li,
Chih-Yu Chen, Jinn Peter Chu, Jenq-Gong Duh, Ming-Jen Chen, Shih-Hsin
Chang, Wen-Chien Huang, "Enhanced cutting durability of surgical blade
by coating with Fe-based metallic glass thin film", Intermetallics, Vol. 65,
pp. 56-60, (2015).
[8] Strauss, J. (2019). Metal injection molding (MIM) of precious
metals. Handbook of Metal Injection Molding, pp.609-622.
[9] Zhou, B., Zhou, J., Li, H. and Lin, F. (2018). A study of the microstructures

and mechanical properties of Ti6Al4V fabricated by SLM under
vacuum. Materials Science and Engineering: A, 724, pp.1-10.
[10] Mahbooba, Z., Thorsson, L., Unosson, M., Skoglund, P., West, H., Horn, T.,
Rock, C., Vogli, E. and Harrysson, O. (2018). Additive manufacturing of an
iron-based bulk metallic glass larger than the critical casting
thickness. Applied Materials Today, 11, pp.264-269.
[11] P. H. Tsai, A. C. Xiao, J.B. Li, J.S.C. Jang, J.P. Chun, J.C. Huang,"
Prominent Fe-based bulk amorphous steel alloy with large supercooled
liquid region and superior corrosion resistance", Journal of alloys and
compounds, Vol 586,pp.94-98, (2014).
[12] J. Kramer, "Produced the first amorphous metals through vapor deposition",
Annals of Physics, Vol. 19, pp. 37, (1934).
[13] A. Brenner, D. E. Couch, and E. K. Williams, "Electrodeposition of Alloys
of Phosphorus with Nickel or Cobalt", Journal of Research of the National
Bureau of Standards, Vol. 44, pp. 109-122, (1950).
[14] W. Klement, R. H. Willens, and P. Duwez, "Non-crystalline Structure in
solidified Gold-Silicon alloys", Nature, Vol. 187, pp. 869-870, (1960).
[15] H. S. Chen, "Glassy metals", Rep. Prog. Phys, Vol. 43, pp. 364, (1980).
[16] C. C. Koch, O. B. Cavin, C. G. McKamey, and J. O. Scarbrough,
"Preparation of amorphous Ni60Nb40 by mechanical alloying, Applied
Physics Letters", Vol. 43, pp. 1017-1019, (1983).
[17] A. Inoue, "High strength bulk amorphous alloys with low critical cooling
rates", Materials Transactions JIM, Vol. 36, pp. 866-875, (1995).
[18] A. Inoue, T. Zhang, and T. Masumoto, "Production of Amorphous Cylinder
and Sheet of La55Al25Ni20 Alloy by a Mettallic Mold Casting Method",

Material Transactions JIM, Vol. 31, pp. 425-428, (1990).
[19] A. Inoue, T. Nakamurat, N. Nishiyamatt, and T. Masumoto, "Mg-Cu-Y Bulk
Amorphous Alloys with High Tensile Strength Produced by a High-Pressure
Die Casting Method", Materials Transactions JIM, Vol. 33, pp. 937-945,
(1992).
[20] R. Abbaschian, L. Abbaschian, R. E. Reed-hill, Physical Metallurgy
Principles, Third edition, (1994).
[21] K. W. Dalgarno and T.D. Stewart, " Manufacture of production injection
mould tooling incorporating conformal cooling channels via indirect
selective laser sintering", proceeding of the institution of mechanical
engineers, Vol. 215, Issue 10, pp. 1323-1332, (2001).
[22] C. Suryanarayana, A. Inoue, "Bulk Metallic Glassed", p.61, (2011).
[23] G. N. Jackson, “R.F. sputtering”, Thin Solid Film, Vol. 5, p.209, 1907.
[24] K. L. Chapra, “Thin Film Phenomena”, McGraw-Hill, 1969.
[25] A. Inoue, Materials Transactions JIM, Vol. 36, pp. 866, (1995).
[26] Z. P. Lu, C. T. Liu, "A new glass-forming ability criterion for bulk metallic
glasses", Acta Materilia, Vol. 50, pp. 3501-3512, (2002).
[27] X. H. Du, J. C. Huang, C. T. Liu, and Z. P. Lu, "New Criterion of Glass
Forming Ability for Bulk Metallic Glasses", Journal of Applied Physics, Vol.
101, pp. 086108-1-3, (April 2007).
[28] Y. Li, S. C. Ng, C. K. Ong, H. H. Hng, T. T. Goh , "Glass forming ability of
bulk glass forming alloys" , Scr Mater , Vol. 36 , P. 783 , (1997).
[29] S. Guo, Z. P. Lu, C. T. Liu, "Identify the best glass forming ability criterion",
Intermetallics,Vol. 18 , pp. 883-888 , (2010).
[30] Randall M. German, Powder Metallurgy Science, Second edition, (1994).

[31] G. Antipas, " Liquid Column Deformation and Particle Size Distribution in
Gas Atomization", Mater. Sci. Appl. Vol. 2, pp. 87-96, (2011).
[32] 蔡恆毅 , "選擇性雷射燒熔製程" , 工業材料雜誌 , Vol. 369, pp. 112-121,
(2017).
[33] B.C. Gross, J.L. Erkal, S.Y. Lockwood, Chengpeng Chen,and Dana M.
Spence , " Evaluation of 3D Printing and Its Potential Impact on
Biotechnology and the Chemical Sciences", Analytical Chemistry, Vol. 86,
pp. 3241-3243, (2014).
[34] H. M. Ismaeel, M. A. Khattck, M. N. Tamin, M. S. Kham, N. Lqbal , S.
Kazi , S. Badshah , R.U. Khan , "Energy Absorption Ability of Thin-Walled
Square Hollow Section of Low Carbon Sheet Metals under Quasi-Static
Axial Compression" , Journal of Advanced Research in Applied Mechanics ,
Vol. 18 , pp. 1-14, (2016).
[35] G. R. Anstis, P. Chantikul, B. R. Lawn, and D. B. Marshall, "A Critical
Evaluation of Indentation Techniques for Measuring Fracture Toughness: I,
Direct Crack Measurements", Journal of the American Ceramic Society,
Vol.6, pp. 533-538, (1981).
[36] I. Yadroitsev, Ph. Bertrand, I. Smurov, Parametric analysis of the selective
laser melting process, Applied Surface Science, Vol. 253, pp. 8064–8069,
(2007)
[37] EO. Olakanmi, RF. Cochrane, KW. Dalgarno, " Densification mechanism
and microstructural evolution in selective laser sintering of Al–12Si
Powders", JMater Process Technol, Vol. 211, pp. 113–121, (2011).
[38] T.S. Srivatsan, T.S. Sudarshan, Additive Manufacturing: Innovations,
Advances, and Applications, CRC Press, (2015).
[39] Li, Y., Zhang, C., Xing, W., Guo, S. and Liu, L. Design of Fe-Based Bulk
Metallic Glasses with Improved Wear Resistance. ACS Applied Materials &
Interfaces, 10(49), pp.43144-43155,2018.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明