博碩士論文 106323114 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:18.191.181.143
姓名 邱穎波(Yin-Po Chiu)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 液珠預變形對其潤濕性與熱毛細力趨動 之運動行為分析
(Analysis of pre-deformation of liquid droplet on its wettability and thermocapillary movement)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-13以後開放)
摘要(中) 隨著微流體技術的快速發展,此時表面張力將成為主導流體驅動的重要因素,而因溫度梯度產生表面張力差的液體熱毛細力驅動也就成為了現今許多領域需要考慮的議題。過去學者們對熱毛細力已有相當程度的研究,普遍認為體積越大的液珠其直徑越大,能有更好的熱毛細力驅動效果。然而在某些情況下,流體黏滯力與遲滯力會將其抵銷導致液體無法移動。為此利用液珠預變形的方式觀察熱毛細力、遲滯力以及黏滯力之間對於熱毛細力驅動液珠的影響,以期望達到大體積液珠能產生熱毛細力驅動的效果。
本文利用壓縮釋放過程在液珠體積固定的情況下,製作出不同直徑大小的預變形液珠,並於光滑矽晶圓上以熱毛細力驅動大體積之預變形石蠟油液珠,再與無預變形之液珠相互比較。發現無預變形直徑6 mm之液珠後端會在前期因溫度而引起擴展並且外觀嚴重變形。預變形液珠於小直徑時不會有擴展發生,但前端會發生毛細收縮,後端靜止不動。而直徑到達9 mm以上後,後端成功產生熱毛細力驅動現象,前端卻依然時而發生毛細收縮。為了解這樣的狀況,利用熱毛細力驅動力學模型對預變形液珠進行分析。發現預變形之液珠會在加熱後於兩端產生一股向內壓縮的力。推測一開始液珠經過壓縮釋放過程後會處於一個新的準穩態因此潤濕性增加,而預變形液珠一經加熱則準穩態解除,液珠會傾向回復到原本的狀態造成兩端產生毛細收縮,而這樣的毛細收縮行為對於熱毛細力驅動來說會在後端成為助力,前端成為阻力,而在後端毛細力與部分黏滯力抵銷,產生熱毛細力驅動。
摘要(英) With the rapid development of microfluidic technology, surface tension will become an important factor in the driving of fluids at this time, and the liquid thermocapillary driving of the difference in surface tension due to temperature gradient has become a topic that needs to be considered in many fields today. In the past, scholars have conducted considerable research on thermocapillary force. It is generally believed that the larger the volume and diameter of droplet, which can produce a better thermocapillary effect. However, in some cases, the fluid viscosity and hysteresis will offset them and make the liquid unable to move. Therefore, the pre-deformation of the liquid droplet is used to observe the influence of the thermocapillary force, hysteresis force and viscous force on the thermocapillary driving the liquid droplet, in order to achieve the effect that the large-volume liquid droplet can produce the thermocapillary phenomenon.
In this paper, the compression release process is used to produce pre-deformed liquid droplets of different diameters under the condition of a fixed liquid droplet volume, and the large-volume pre-deformed paraffin oil droplets are driven by thermocapillary force on a smooth silicon wafer. It was found that the back edge of the non-pre-deformed liquid droplet with a diameter of 6 mm would spread in the early stage and the appearance was severely deformed. When the small diameter pre-deformed liquid droplet which no spread will occur, but the front edge will undergo capillary shrinkage and the back edge will remain stationary. After the diameter reaches 9 mm or more, the thermocapillary phenomenon is successfully generated at the rear edge, but the front edge still occasionally shrinks. In order to understand this situation, the thermocapillary driven mechanical model is used to analyze the pre-deformed liquid droplets. It is found that liquid droplets with diameters of 9, 10.5 mm will generate an inward compression force at both edges after heating. It is speculated that the liquid droplets will be in a new quasi-steady state after the compression and release process at the beginning, and therefore the wettability will increase, while the pre-deformed liquid droplets will be released from the quasi-steady state once heated, and the liquid droplets will tend to return to their original state, causing both edges to produce capillary contraction, and such capillary contraction behavior for the thermocapillary drive will become a boost at the rear edge and a resistance at the front edge, while the capillary force at the rear edge counteracts part of the viscous force to generate a thermocapillary drive.
關鍵字(中) ★ 熱毛細力
★ 預變形
★ 毛細收縮
關鍵字(英) ★ Thermocapillary
★ pre-deformation
★ capillary shrinkage
論文目次 摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xi
一、緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-2-1毛細力與熱毛細力 2
1-2-2液珠直徑對熱毛細現象之影響 3
1-2-3 黏滯力對熱毛細現象之影響 4
1-2-4 潤濕性對熱毛細現象之影響 6
1-2-5 遲滯力對熱毛細現象之影響 7
1-2-6 液珠預變形對液珠直徑的影響 9
1-3 研究動機與目的 10
1-4 論文架構 12
二、理論基礎 13
2-1 靜態接觸角 13
2-1-1 楊氏方程式 (Young’s equation) 13
2-1-2 壓縮 -釋放過程改變靜態接觸角 14
2-2 表面張力 15
2-3 熱毛細現象熱毛細現象 16
2-4 遲滯效應遲滯效應 17
2-4-1 遲滯角遲滯角 17
2-4-2 遲滯力遲滯力 18
2-5 黏滯力黏滯力 19
2-6 統御方程式與無因次分析統御方程式與無因次分析 20
三、研究方法 25
3-1 研究架構研究架構 25
3-2 靜態參數量測與分析方法靜態參數量測與分析方法 27
3-2-1 液珠靜態接觸角實驗液珠靜態接觸角實驗 27
3-2-2 液珠預變形實驗液珠預變形實驗 27
3-3 動態實驗量測與分析方法動態實驗量測與分析方法 28
3-3-1 實驗架設實驗架設 28
3-3-2 位移量測位移量測 30
3-3-3 接觸角量測接觸角量測 32
3-4 試片溫度梯度測試試片溫度梯度測試 33
四、結果與討論 35
4-1 液體性質參數液體性質參數 35
4-2 液珠靜態接觸角實驗結果液珠靜態接觸角實驗結果 36
4-3 液珠預變形實驗結果液珠預變形實驗結果 37
4-4液珠在溫度梯度表面移動實驗結果液珠在溫度梯度表面移動實驗結果 39
4-4-1 位移位移-時間關係時間關係 40
4-4-2 速度速度-時間關係時間關係 41
4-4-3 接觸角變化趨勢接觸角變化趨勢 43
4-4-4 液珠在溫度梯度表面移動實驗結論液珠在溫度梯度表面移動實驗結論 44
4-5 預變形之液珠在溫度梯度表面移動實驗結果預變形之液珠在溫度梯度表面移動實驗結果 45
4-5-1 位移位移-時間關係時間關係 49
4-5-2 接觸角接觸角-時間關係時間關係 53
4-5-4 速度速度-時間關係時間關係 54
4-6 預變形液珠熱毛細力驅動之力學分析預變形液珠熱毛細力驅動之力學分析 55
4-6-1 預變形液珠熱毛細力驅動之阻力分析預變形液珠熱毛細力驅動之阻力分析 56
4-6-2 液珠預變形對熱毛細力驅動之影響液珠預變形對熱毛細力驅動之影響 59
4-7 無因次分析無因次分析 64
第五章、結論與未來展望 67
5-1結論 67
5-2 未來展望 68
參考文獻 69
參考文獻 [1] A. Kundan, J. L. Plawsky, P. C. Wayner Jr., D. F. Chao., R. J. Sicker, B. J. Motil, T. Lorik, L. Chestney, J. Eustace, and J. Zoldak, ” Thermocapillary phenomena and performance limitations of a wickless heat pipe in microgravity,” Physical review letters, Vol. 114, pp. 146105, 2015.
[2] W. Wilkens, “Contamination danger by oil-lubricated ball beatings in spacecraft,” J. Spacecraft Rockets, Vol. 8, No. 9, pp. 962 - 965, 1971.
[3] S. S. Kalichetty, T. Sundararajan, and A. Pattamatta, “Thermocapillary migration and interaction dynamics of droplets in a constricted domain,” Physics of Fluids, Vol. 31, pp. 022106, 2019.
[4] R. Wang and S. Bai, ” Modeling, and experimental analysis of thermocapillary effect on laser grooved surfaces at high temperature,” Applied Surface Science, Vol. 465, pp. 41 - 47, 2019.
[5] J. B. Brzoska, F. B. Wyart, and F. Rondelez, “Motions of droplets on hydrophobic model surfaces induced by thermal gradients,” Langmuir, pp. 2220 - 2224, 1993.
[6] G. Karapetsas, N. T. Chamakos, and A. G. Papathanasiou, “Thermocapillary Droplet Actuation: Effect of Solid Structure and Wettability,” Langmuir, Vol. 33, pp. 10838 - 10850, 2017
[7] D. T. Wasan, A. D. Nikolov, and H. Brenner “Droplets speeding on surfaces,” Science, Vol 291, pp. 605 -606, 2001.
[8] H. Liu and Y. Zhang, ” Modelling thermocapillary migration of a microfluidic
70
droplet on a solid surface,” Journal of Computational Physics, Vol. 280, pp. 37 - 53, 2015.
[9] H. B. Nguyen and J. C. Chen, “A numerical study of thermocapillary migration of a small liquid droplet on a horizontal solid surface,” Phys. Fluids, Vol. 22, pp. 062102, 2010
[10] Q. Dai, M. M. Khonsari, C. Shen, W. Huang, and X. Wang, “Thermocapillary migration of liquid droplets induced by a unidirectional thermal gradient,” Langmuir, Vol. 32, No. 30, pp. 7485 - 7492, 2016.
[11] S. J. Hong, T. H. Chou, S. H. Chan, Y. J. Sheng, and Heng-Kwong Tsao”Droplet compression and relaxation by a superhydrophobic surface: contact angle hysteresis,” Langmuir, Vol. 28, pp. 5606 - 5613, 2012.
[12] Q. Dai, Y. Ji, Z. Chong, W. Huang, and X. Wang, “Manipulating thermocapillary migration via superoleophobic surfaces with wedge shaped superoleophilic grooves,” Journal of Colloid and Interface Science, Vol. 557, pp. 837 - 844, 2019.
[13] T. Young, ”An essay on the cohesion of fluids,” Philosophical Transactions of the Royal Society of London Vol. 95, pp. 65 - 87, 1805.
[14] A. Cecere, R.D. Paola, R. Savino, Y. Abe, and L. Carotenuto,and S.V. Vaerenbergh, ” Observation of Marangoni flow in ordinary and self-rewetting fluids using optical diagnostic systems,” Eur. Phys. J. Special Topics,Vol. 192, pp. 109 - 120, 2011.
[15] W. R. Jones Jr and L. D. Wedeven, “Surface-tension measurements in air of liquid lubricants to 2000 c by the differential-maximum-bubble- pressure technique,” Nasa technical note, NASA TN D-6450, 1971.
71
[16] Q. Dai, W. Huang, X. Wang, and M. M. Khonsari, “ Contact Angle Hysteresis Effect on the Thermocapillary Migration of Liquid Droplets,” Journal of Colloid and Interface Science, Vol. 515, pp. 32 - 38, 2018.
[17] M. K. Smith, “Thermocapillary migration of a two-dimensional liquid droplet on a solid surface,” J. Fluid Mech, Vol. 001, No. 294, pp. 209 - 230, 1995.
[18] L. M. Hocking, “The spreading of a thin drop by gravity and capillarity,” Q. Jl Mecb. appl. Math., Vol. 36, pp. 1, 1983.
指導教授 洪銘聰(Ming-Tsung Hung) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明