參考文獻 |
[1] Larminie, J., and Dicks, A., Fuel Cell Systems Explained: Second Edition, 2013.
[2] Carrette, L., Friedrich, K. A., and Stimming, U., “Fuel Cells - Fundamentals and Applications,” Fuel Cells, Vol. 1(1), pp. 5–39, 2001.
[3] Mekhilef, S., Saidur, R., and Safari, A., “Comparative Study of Different Fuel Cell Technologies,” Renew. Sustain. Energy Rev., Vol. 16(1), pp. 981–989, 2012.
[4] Ren, X., Lv, Q., Liu, L., Liu, B., Wang, Y., Liu, A., and Wu, G., “Current Progress of Pt and Pt-Based Electrocatalysts Used for Fuel Cells,” Sustain. Energy Fuels, Vol. 4(1), pp. 15–30, 2019.
[5] Benyoucef, A., Klein, D., Coddet, C., and Benyoucef, B., “Development and Characterisation of (Ni, Cu, Co)-YSZ and Cu-Co-YSZ Cermets Anode Materials for SOFC Application,” Surf. Coatings Technol., Vol. 202(10), pp. 2202–2207, 2008.
[6] Meng, Y., Gao, J., Zhao, Z., Amoroso, J., Tong, J., and Brinkman, K. S., “Review: Recent Progress in Low-Temperature Proton-Conducting Ceramics,” J. Mater. Sci., Vol. 54(13), pp. 9291–9312, 2019.
[7] Fabbri, E., Pergolesi, D., and Traversa, E., “Materials Challenges toward Proton-Conducting Oxide Fuel Cells: A Critical Review,” Chem. Soc. Rev., Vol. 39(11), pp. 4355–4369, 2010.
[8] Lee, K. R., Tseng, C. J., Jang, S. C., Lin, J. C., Wang, K. W., Chang, J. K., Chen, T. C., and Lee, S. W., “Fabrication of Anode-Supported Thin BCZY Electrolyte Protonic Fuel Cells Using NiO Sintering Aid,” Int. J. Hydrogen Energy, Vol. 44(42), pp. 23784–23792, 2019.
[9] Primdahl Søren, Nickel/Yttria-Stabilised Zirconia Cermet Anodes for Solid Oxide Fuel Cells, 1999.
[10] Stambouli, A. B., and Traversa, E., “Solid Oxide Fuel Cells (SOFCs): A Review of an Environmentally Clean and Efficient Source of Energy,” Renew. Sustain. Energy Rev., Vol. 6(5), pp. 433–455, 2002.
[11] Ishihara, T., Sammes, N. M., and Yamamoto, O., “Electrolytes,” High-temperature Solid Oxide Fuel Cells Fundam. Des. Appl., pp. 83–117, 2003.
[12] Kreuer, K. D., “Proton-Conducting Oxides,” Annu. Rev. Mater. Res., Vol. 33(1), pp. 333–359, 2003.
[13] Malavasi, L., Fisher, C. A. J., and Islam, M. S., “Oxide-Ion and Proton Conducting Electrolyte Materials for Clean Energy Applications: Structural and Mechanistic Features,” Chem. Soc. Rev., Vol. 39(11), pp. 4370–4387, 2010.
[14] Iwahara, H., “Oxide-Ionic and Protonic Conductors Based on Perovskite-Type Oxides and Their Possible Applications,” Solid State Ionics, Vol. 52(1–3), pp. 99–104, 1992.
[15] Iwahara, H., Asakura, Y., Katahira, K., and Tanaka, M., “Prospect of Hydrogen Technology Using Proton-Conducting Ceramics,” Solid State Ionics, Vol. 168(3–4), pp. 299–310, 2004.
[16] Yajima, T., Kazeoka, H., Yogo, T., and Iwahara, H., “Proton Conduction in Sintered Oxides Based on CaZrO3,” Solid State Ionics, Vol. 47(3–4), pp. 271–275, 1991.
[17] Guo, Y., Lin, Y., Shi, H., Ran, R., and Shao, Z., “A High Electrochemical Performance Proton Conductor Electrolyte with CO2 Tolerance,” Cuihua Xuebao / Chinese J. Catal., Vol. 30(6), pp. 479–481, 2009.
[18] Transactions, E. C. S., and Society, T. E., “Improvement of Protonic Ceramic Fuel Cells with Thin Film BCZY Electrolyte,” ECS Meet. Abstr., Vol. 68(1), pp. 2545–2553, 2015.
[19] Reddy, G. S., and Bauri, R., “Y and In-Doped BaCeO3-BaZrO3solid Solutions: Chemically Stable and Easily Sinterable Proton Conducting Oxides,” J. Alloys Compd., Vol. 688, pp. 1039–1046, 2016.
[20] Gopalan, S., “Thermodynamic Stabilities of SrCeO[Sub 3] and BaCeO[Sub 3] Using a Molten Salt Method and Galvanic Cells,” J. Electrochem. Soc., Vol. 140(4), p. 1060, 1993.
[21] Chen, F., Sørensen, O. T., Menga, G., and Penga, D., “Chemical Stability Study of BaCe Nd O Ceramic,” J. Mater. Chem., Vol. 7(3), pp. 481–485, 1997.
[22] Guo, Y., Lin, Y., Ran, R., and Shao, Z., “Zirconium Doping Effect on the Performance of Proton-Conducting BaZryCe0.8-YY0.2O3-δ (0.0 ≤ y ≤ 0.8) for Fuel Cell Applications,” J. Power Sources, Vol. 193(2), pp. 400–407, 2009.
[23] Afif, A., Radenahmad, N., Lim, C. M., Petra, M. I., Islam, M. A., Rahman, S. M. H., Eriksson, S., and Azad, A. K., “Structural Study and Proton Conductivity in BaCe0.7Zr0.25−xYxZn0.05O3(x = 0.05, 0.1, 0.15, 0.2 & 0.25),” Int. J. Hydrogen Energy, Vol. 41(27), pp. 11823–11831, 2016.
[24] Lagaeva, J., Medvedev, D., Demin, A., and Tsiakaras, P., “Insights on Thermal and Transport Features of BaCe0.8-XZrxY0.2O3-δ Proton-Conducting Materials,” J. Power Sources, Vol. 278, pp. 436–444, 2015.
[25] Heilig, M. L., “United States Patent Office,” ACM SIGGRAPH Comput. Graph., Vol. 28(2), pp. 131–134, 1994.
[26] Tanner, C. W., “The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance,” J. Electrochem. Soc., Vol. 144(1), p. 21, 1997.
[27] Gorte, R. J., and Vohs, J. M., “Nanostructured Anodes for Solid Oxide Fuel Cells,” Curr. Opin. Colloid Interface Sci., Vol. 14(4), pp. 236–244, 2009.
[28] Fang, S., Brinkman, K., and Chen, F., “Unprecedented CO2-Promoted Hydrogen Permeation in Ni-BaZr 0.1Ce0.7Y0.1Yb0.1O 3-δ Membrane,” ACS Appl. Mater. Interfaces, Vol. 6(1), pp. 725–730, 2014.
[29] Fabbri, E., Pergolesi, D., and Traversa, E., “Electrode Materials: A Challenge for the Exploitation of Protonic Solid Oxide Fuel Cells,” Sci. Technol. Adv. Mater., Vol. 11(4), 2010.
[30] Matsui, T., Kishida, R., Muroyama, H., and Eguchi, K., “Comparative Study on Performance Stability of Ni–Oxide Cermet Anodes under Humidified Atmospheres in Solid Oxide Fuel Cells,” J. Electrochem. Soc., Vol. 159(8), pp. F456–F460, 2012.
[31] Mather, G. C., Figueiredo, F. M., Jurado, J. R., and Frade, J. R., “Synthesis and Characterisation of Cermet Anodes for SOFCs with a Proton-Conducting Ceramic Phase,” Solid State Ionics, Vol. 162–163, pp. 115–120, 2003.
[32] Coors, W. G., and Manerbino, A., “Characterization of Composite Cermet with 68wt.% NiO and BaCe0.2Zr0.6Y0.2O3-δ,” J. Memb. Sci., Vol. 376(1–2), pp. 50–55, 2011.
[33] Bi, L., Fabbri, E., Sun, Z., and Traversa, E., “BaZr0.8Y0.2O3−δ-NiO Composite Anodic Powders for Proton-Conducting SOFCs Prepared by a Combustion Method,” J. Electrochem. Soc., Vol. 158(7), p. B797, 2011.
[34] Narendar, N., Mather, G. C., Dias, P. A. N., and Fagg, D. P., “The Importance of Phase Purity in Ni-BaZr0.85Y 0.15O3-δ Cermet Anodes - Novel Nitrate-Free Combustion Route and Electrochemical Study,” RSC Adv., Vol. 3(3), pp. 859–869, 2013.
[35] Chevallier, L., Zunic, M., Esposito, V., Di Bartolomeo, E., and Traversa, E., “A Wet-Chemical Route for the Preparation of Ni-BaCe0.9Y0.1O3 - δ Cermet Anodes for IT-SOFCs,” Solid State Ionics, Vol. 180(9–10), pp. 715–720, 2009.
[36] Rainwater, B. H., Liu, M., and Liu, M., “A More Efficient Anode Microstructure for SOFCs Based on Proton Conductors,” Int. J. Hydrogen Energy, Vol. 37(23), pp. 18342–18348, 2012.
[37] Yang, L., Zuo, C., Wang, S., Cheng, Z., and Liu, M., “A Novel Composite Cathode for Low-Temperature SOFCs Based on Oxide Proton Conductors,” Adv. Mater., Vol. 20(17), pp. 3280–3283, 2008.
[38] Song, H. S., Lee, S., Hyun, S. H., Kim, J., and Moon, J., “Compositional Influence of LSM-YSZ Composite Cathodes on Improved Performance and Durability of Solid Oxide Fuel Cells,” J. Power Sources, Vol. 187(1), pp. 25–31, 2009.
[39] Peng, R., Wu, T., Liu, W., Liu, X., and Meng, G., “Cathode Processes and Materials for Solid Oxide Fuel Cells with Proton Conductors as Electrolytes,” J. Mater. Chem., Vol. 20(30), pp. 6218–6225, 2010.
[40] Dailly, J., Fourcade, S., Largeteau, A., Mauvy, F., Grenier, J. C., and Marrony, M., “Perovskite and A2MO4-Type Oxides as New Cathode Materials for Protonic Solid Oxide Fuel Cells,” Electrochim. Acta, Vol. 55(20), pp. 5847–5853, 2010.
[41] Xie, Z., Xia, C., Zhang, M., Zhu, W., and Wang, H., “Ni1-XCux Alloy-Based Anodes for Low-Temperature Solid Oxide Fuel Cells with Biomass-Produced Gas as Fuel,” J. Power Sources, Vol. 161(2), pp. 1056–1061, 2006.
[42] Miyake, M., Matsumoto, S., Iwami, M., Nishimoto, S., and Kameshima, Y., “Electrochemical Performances of Ni1−xCux/SDC Cermet Anodes for Intermediate-Temperature SOFCs Using Syngas Fuel,” Int. J. Hydrogen Energy, Vol. 41(31), pp. 13625–13631, 2016.
[43] Wang, Z., Wang, S., Jiao, S., Weng, W., Cheng, K., Qian, B., Yu, H., and Chao, Y., “A Hierarchical Porous Microstructure for Improving Long-Term Stability of Ni1-XCux/SDC Anode-Supported IT-SOFCs Fueled with Dry Methane,” J. Alloys Compd., Vol. 702, pp. 186–192, 2017.
[44] Jia, L., Lu, Z., Miao, J., Liu, Z., Li, G., and Su, W., “Effects of Pre-Calcined YSZ Powders at Different Temperatures on Ni-YSZ Anodes for SOFC,” J. Alloys Compd., Vol. 414(1–2), pp. 152–157, 2006.
[45] Wang, S., He, Q., and Liu, M., “Promising Ni-Fe-LSGMC Anode Compatible with Lanthanum Gallate Electrolyte,” Electrochim. Acta, Vol. 54(15), pp. 3872–3876, 2009.
[46] Chen, M., Kim, B. H., Xu, Q., and Ahn, B. G., “Preparation and Electrochemical Properties of Ni-SDC Thin Films for IT-SOFC Anode,” J. Memb. Sci., Vol. 334(1–2), pp. 138–147, 2009.
[47] Da Costa, L. O. O., Da Silva, A. M., Noronha, F. B., and Mattos, L. V., “The Study of the Performance of Ni Supported on Gadolinium Doped Ceria SOFC Anode on the Steam Reforming of Ethanol,” Int. J. Hydrogen Energy, Vol. 37(7), pp. 5930–5939, 2012.
[48] Hoa, N. K., Rahman, H. A., and Somalu, M. R., “Effects of NiO Loading and Pre-Calcination Temperature on NiO-SDCC Composite Anode Powder for Low-Temperature Solid Oxide Fuel Cells,” Ceram. - Silikaty, Vol. 62(1), pp. 50–58, 2018.
[49] Betz, J., Nowak, L., Brinkmann, J. P., Bärmann, P., Diehl, M., Winter, M., Placke, T., and Schmuch, R., “Understanding the Impact of Calcination Time of High-Voltage Spinel Li1+xNi0.5Mn1.5O4 on Structure and Electrochemical Behavior,” Electrochim. Acta, Vol. 325, p. 134901, 2019.
[50] Mohammed, M. A., Uday, M. B., and Izman, S., “Effects of Calcination Temperature and Time on the Ca3Co4O9 Purity When Synthesized Using Starch-Assisted Sol-Gel Combustion Method,” J. Adv. Ceram., Vol. 9(2), pp. 162–172, 2020.
[51] Kim, H., Lu, C., Worrell, W. L., Vohs, J. M., and Gorte, R. J., “Cu-Ni Cermet Anodes for Direct Oxidation of Methane in Solid-Oxide Fuel Cells,” J. Electrochem. Soc., Vol. 149(3), p. A247, 2002.
[52] Shaikjee, A., and Coville, N. J., “A Novel Type of Carbon: The Synthesis of Patterned Co-Block Carbon Nanofibers,” Small, Vol. 7(18), pp. 2593–2597, 2011.
[53] Wei, K., Wang, X., Budiman, R. A., Kang, J., Lin, B., Zhou, F., and Ling, Y., “Progress in Ni-Based Anode Materials for Direct Hydrocarbon Solid Oxide Fuel Cells,” J. Mater. Sci., Vol. 53(12), pp. 8747–8765, 2018.
[54] Lee, J. H., Lee, E. G., Joo, O. S., and Jung, K. D., “Stabilization of Ni/Al2O3 Catalyst by Cu Addition for CO2 Reforming of Methane,” Appl. Catal. A Gen., Vol. 269(1–2), pp. 1–6, 2004.
[55] Lorenzut, B., Montini, T., De Rogatis, L., Canton, P., Benedetti, A., and Fornasiero, P., “Hydrogen Production through Alcohol Steam Reforming on Cu/ZnO-Based Catalysts,” Appl. Catal. B Environ., Vol. 101(3–4), pp. 397–408, 2011.
[56] Wada, K., Yamabe, J., Ogawa, Y., Takakuwa, O., Iijima, T., and Matsunaga, H., “Comparative Study of Hydrogen-Induced Intergranular Fracture Behavior in Ni and Cu–Ni Alloy at Ambient and Cryogenic Temperatures,” Mater. Sci. Eng. A, Vol. 766(August), p. 138349, 2019.
[57] Sowjanya, C., Mandal, R., and Pratihar, S. K., “Grain Size Dependent Electrical Conductivity, Chemical Surface Exchange and Bulk Diffusion Coefficient of La0.5Sr0.5Al0.2Fe0.8O3-δ,” J. Alloys Compd., Vol. 818(xxxx), p. 152831, 2020.
[58] Mah, J. C. W., Muchtar, A., Somalu, M. R., and Ghazali, M. J., “Metallic Interconnects for Solid Oxide Fuel Cell: A Review on Protective Coating and Deposition Techniques,” Int. J. Hydrogen Energy, Vol. 42(14), pp. 9219–9229, 2017. |