博碩士論文 107323064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.109.142
姓名 賴鈺諴(Yu-Hsien Lai)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 內鑲水冷流道雙極板之質子交換膜燃料電池
(Proton Exchange Membrane Fuel Cell with Water-Cooled Bipolar Plate)
相關論文
★ 熱塑性聚胺酯複合材料製備燃料電池 雙極板之研究★ 以穿刺實驗探討鋰電池安全性之研究
★ 金屬多孔材應用於質子交換膜燃料電池內流道的研究★ 不同表面處理之金屬發泡材於質子交換膜燃料電池內的研究
★ PEMFC電極及觸媒層之電熱流傳輸現象探討★ 熱輻射對多孔性介質爐中氫、甲烷燃燒之影響
★ 高溫衝擊流熱傳特性之研究★ 輻射傳遞對磁流體自然對流影響之研究
★ 小型燃料電池流道設計與性能分析★ 雙重溫度與濃度梯度下多孔性介質中磁流體之雙擴散對流現象
★ 氣體擴散層與微孔層對於燃料電池之影響與分析★ 應用於PEMFC陰極氧還原反應之Pt-Cu雙元觸媒製備及特性分析
★ 加熱對肌肉組織之近紅外光光學特性影響之研究★ 超音速高溫衝擊流之暫態分析
★ 質子交換膜燃料電池陰極端之兩相流模擬與研究★ 矽相關半導體材料光學模式之實驗量測儀器發展
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 質子交換膜燃料電池堆在運行時有控溫之問題,傳統水冷式散熱雖能有效散熱並維持電池性能,但卻需要額外的體積及重量。本研究開發內鑲式水冷流道燃料電池,將水冷流道鑲於燃料流道旁,整合水冷流道及燃料流道於雙極板中,省去傳統水冷板之加裝,藉以降低質子交換膜燃料電堆之體積、重量與生產成本;另外,為了解決因增大反應面積而造成之電池變形影響,本研究於水冷區安裝定位鎖緊區,此區之設置能有效降低電池變形量,並優化內部流場,進而提升電池性能。
研究結果顯示,於定位鎖緊區加裝螺絲,提供適當鎖緊力,能改善電池之變形情況,使其內部中心受壓較為均勻,讓氣體擴散層及流道接觸更加均勻。最終,單電池於操作電壓0.8 V下,有效提升性能48 %;另外,藉由化學計量比及背壓法測試之結果可得,此設計應用於電堆後,其流場與水密技術之開發並無太大問題,而在電壓均勻性與介面壓力均勻性亦具不錯之表現。而後若將此設計組裝成2 kW電堆,比起傳統水冷板設計,內鑲水冷燃料電池電堆可降低9 %之電堆體積以及節省12 %之加工成本。
摘要(英) In this research, we discuss about controlled temperature proton exchange membrane fuel cell (PEMFC) stack with water cooling system. The separate water cooling plates at the ends and in between the traditional PEMFC stack increases its cost, volume and weight. A flow channel plate embedded with water cooling channel feature to improve the temperature control in PEMFC stack is developed in this study. The water cooling channel is inlaid next to the fuel flow channel in the fuel cell and the inlet and outlet of fuel and water for the PEMFC stack is integrated to its bipolar plates. Further, the idea of designing a rectangular PEMFC stack with in-situ cooling design could arise uneven locking of the fuel cell. The uniform locking in the rectangular PEMFC stack is achieved by introducing an additional locking feature design in flow field plates of the in-situ water cooling area in the PEMFC stack. The PEMFC stack bolt fixing positions in this design promotes uniform locking and pressure distribution in fuel cell assembly. Thus promotes the uniform contact between the gas diffusion layer and flow chancel in the PEMFC stack. The experimental results shows that an increase in performance of 48 % (0.8 V) is observed in a single cell with additional lock feature compared to normal locking PEMFC. The effects of various fuel stoichiometric ratio and back pressure on the performance of the cell is also investigated. The uniform and good flow field distribution is also observed in PEMFC stack with this proposed design. The firm uniform contact between the PEMFC stack components in this design favored in exhibiting outstanding performance. Assembling a 2 kW PEMFC stack with this proposed design could also reduce the volume of the stack by 9 %. This novel flow field design study helps in decreasing the cost, volume and weight of the PEMFC stack with higher performance.
關鍵字(中) ★ 質子交換膜燃料電池
★ 水冷流道
★ 內鑲設計
★ 流道設計
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xi
符號說明 xii
第一章 緒論 1
1-1  前言 1
1-2  質子交換膜燃料電池 4
1-2-1 燃料電池種類 4
1-2-2 質子交換膜燃料電池工作原理 7
1-2-3 質子交換膜燃料電池之組成結構 9
1-2-4 質子交換膜燃料電池之極化現象 14
1-3  電化學交流阻抗基本原理 16
1-4  研究動機與方向 18
第二章 文獻回顧 20
2-1  質子交換膜燃料電池 20
2-2  金屬多孔材特性之研究與應用 21
2-3  組裝受力對電池之影響 23
2-4  壓降分析 24
2-5  電化學交流阻抗分析 25
第三章 實驗方法與設備 28
3-1  實驗架構與流程 28
3-2  介面壓力量測 29
3-3  壓降量測 30
3-4  燃料電池各部元件 31
3-4-1 膜電極組 32
3-4-2 矽膠氣密墊片 34
3-4-3 鎳金屬多孔材 34
3-4-4 金屬雙極板與流道 35
3-4-5 端版 35
3-5  燃料電池測試系統 36
3-6  電化學交流阻抗分析儀 40
第四章 結果與討論 44
4-1  內鑲水冷流道之分布與設計 44
4-2  雙極板之水密技術之開發 47
4-3  厚度分布與鎖緊區之應用 49
4-4  電池介面壓力與組裝平台正向力之關係 53
4-5  鎖緊區扭力對電池性能之影響 56
4-6  鎖緊區扭力對流場壓降之影響 60
4-7  電池內部流場分析 62
4-8  內鑲水冷設計電池之背壓法測試 63
4-9  內鑲水冷設計電池之化學計量比測試 67
4-10  電堆之電壓、溫度與介面壓力均勻性測試結果 70
4-11  內鑲式水冷流道與傳統水冷板之比較 74
第五章 結論與未來規劃 76
5-1  結論 76
5-2  未來規劃 77
第六章 參考文獻 78
參考文獻 [1] http://www.ema.org.tw/monthlymgz/pdf/41/78-85.pdf
[2] 尤如瑾,燃料電池市場發展趨勢,工研院IEK 系統能源組,民國九十五年八月。
[3] R. Jiang, D. Chu, “Stack design and performance of polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 93, pp. 25-31, 2001.
[4] M. Li, S. Luo, C. Zeng, J. Shena, H. Linb, C. Caob, “Corrosion behavior of TiN coated type 316 stainless steel in simulated PEMFC environments,” Corros. Sci, Vol. 46, pp. 1369-1380, 2004.
[5] M.H. Oh, Y.S. Yoon, S.G. Park, “The electrical and physical properties of alternative material bipolar plate for PEM fuel cell system,” Electrochim. Acta, Vol. 50, pp. 777-780, 2004.
[6] S.S. Hsieh, Y.J. Huang, B.S. Her, “Effect of pressure drop in different flow fields on water accumulation and current distribution for a micro PEM fuel cell,” Energy Conv. Manag., Vol. 52, pp. 975-982, 2011.
[7] S.S. Hsieh, Y.J. Huang, B.S. Her, “Pressure drop on water accumulation distribution for a micro PEM fuel cell with different flow field plates,” Int. J. Heat Mass Transf., Vol. 52, pp. 5657-5659, 2009.
[8] Su, F.B. Weng, C.Y. Hsu, Y.M. Chen, “Studies on flooding in PEM fuel cell cathode channels,” Int. J. Hydrogen Energy, Vol. 31, pp. 1031-1039, 2006.
[9] J. Wind, R. Spah, W. Kaiser, G. Bohm, “Metallic bipolar plates for PEM fuel cells,” J. Power Sources, Vol. 105, pp. 256-260, 2002.
[10] J. Yu, P. Cheng, Z. Ma, B. Yi, “Fabrication of miniature silicon wafer fuel cells with improved performance,” J. Power Sources, Vol. 124, pp. 40-46, 2003.
[11] J.C. Hung, J. Chin. “The effects of channel depths on the performance of proton exchange membrane fuel cells with metallic bipolar plates,” Soc. Mech. Eng., Vol. 33, pp. 265-270, 2012.
[12] S.S. Hsieh, S.H. Yang, J.K. Kuno, C.F. Huang, H.H. Tsai, “Study of operational parameters on the performance of micro PEMFCs with different flow fields,” Energy Conv. Manag., Vol. 47, pp. 1868-1878, 2006.
[13] A. Su, F.B. Weng, C.Y. Hsu, Y.M. Chen, “Studies on flooding in PEM fuel cell cathode channels,” Int. J. Hydrogen Energy, Vol. 31, pp. 1031-1039, 2006.
[14] Y. Lu, R.G. Reddy, “Performance of micro-PEM fuel cells with different flow fields,” J. Power Sources, Vol. 195, pp. 503-508, 2010.
[15] F. Chen, Y.Z. Wen, H.S. Chu, W.M. Yan, C.Y. Soong, “Convenient two-dimensional model for design of fuel channels for proton exchange membrane fuel cells,” J. Power Sources, Vol. 128, pp. 125-134, 2004.
[16] Y.G. Yoon, W.Y. Lee, G.G. Park, T.H. Yang, C.S. Kim, “Effects of channel and rib widths of flow field plates on the performance of a PEMFC,” Int. J. Hydrogen Energy, Vol. 30, pp. 1363-1366, 2005.
[17] Higier, H. Liu, “Optimization of PEM fuel cell flow field via local current density measurement,” Int. J. Hydrogen Energy, Vol. 35, pp. 2144-2150, 2010.
[18] Y.G. Yoon, W.Y. Lee, G.G. Park, T.H. Yang, C.S. Kim, “Effects of channel configurations of flow field plates on the performance of a PEMFC,” Electrochim. Acta, Vol. 50, pp. 709-712, 2004.
[19] Johnson Matthey PLC, “The fuel cell today industry review 2011 technical report,” Fuel Cell Today, 2011.
[20] K. Kordesch, G. Simader, “Fuel cells and their applications,” VCH Weinheim, 1996.
[21] https://en.wikipedia.org/wiki/Nafion
[22] M.V. Williams, E. Begg, L. Bonville, H. Russell–Kunz, “Characterization of Gas Diffusion Layers for PEMFC,” J. Electrochem. Soc, Vol. 151, A1173-A1180, 2004.
[23] 黃鎮江,燃料電池,全華科技圖書股份有限公司,民國九十四年。
[24] S.D. Yim, Y.J. Soha, Y.G. Yoon, S. Um, C.S. Kim, W.Y. Lee, “Operating characteristics of 40 W-class PEMFC stacks using reformed gas under low humidifying conditions,” J. Power Sources, Vol. 178, pp. 711-715, 2008.
[25] D. Lee, J. Bae, “Visualization of flooding in a single cell and stacks by using a newly-designed transparent PEMFC,” Int. J. Hydrogen Energy, Vol. 37, pp. 422-435, 2012.
[26] D.T. Santa Rose, D.G Pinto, V.S Silva, R.A Silva, C.M. Rangel, “High performance PEMFC stack with open-cathode at ambient pressure and temperature conditions,” Int. J. Hydrogen Energy, Vol. 32, pp. 4350-4357, 2007.
[27] O.J. Murphy, A. Cisar, E. Clarke, “Low-cost light weight high power density PEM fuel cell stack,” Elsevier Science, Vol. 43, pp. 3829-3840, 1998.
[28] J.L. Jespersen, E. Schaltzb, S.K. Kærb, “Electrochemical characterization of a polybenzimidazole-based high temperature proton exchange membrane unit cell,” J. Power Sources, Vol. 191, pp. 289-296, 2009.
[29] D. Chu, R. Jiang, “Comparative studies of polymer electrolyte membrane fuel cell stack and single cell,” J. Power Sources, Vol. 80, pp. 226-234, 1999.
[30] P. Rodatz, F. Büchi, C. Onder, L. Guzzella, “Operational aspects of a large PEFC stack under practical conditions,” J. Power Sources, Vol. 128, pp. 208-217, 2004.
[31] W. Schmittinger, A. Vahidi, “A review of the main parameters influencing long-term performance and durability of PEM fuel cells,” J. Power Sources, Vol. 180, pp. 1-14, 2008.
[32] J.J. Hwang, G.J. Hwang, R.H. Yeh, C.H. Chao, “Measurement of interstitial convective heat transfer and frictional drag for flow across metal foams,” J. Heat Transfer, Vol. 124, pp. 120-129, 2002.
[33] M. Medraj, E. Baril, V. Loya, L.P. Lefebvre, “The effect of microstructure on the permeability of metallic foams,” J. Mater. Sci., Vol. 42, pp. 4372-4383, 2007.
[34] C.J. Tseng, B.T. Tsai, Z.S. Liu, T.C. Cheng, W.C. Chang and S.K. Lo, “A PEM fuel cell with metal foam as flow distributor,” Energy Convers. Manag, Vol. 62, pp. 14-21, 2012.
[35] B.T. Tsai, C.J. Tseng, Z.S. Liu, C.H. Wang, C.I. Lee, C.C. Yang and S.K. Lo, “Effects of flow field design on the performance of a PEM fuel cell with metal foam as the flow distributor,” Int. J. Hydrogen Energy, Vol. 37, pp. I3060-I3066, 2012.
[36] M. S. Hossain, B. Shabani, “Metal foams application to enhance cooling of open cathode polymer electrolyte membrane fuel cells,” J. Power Sources, Vol. 295, pp. 275-291, 2015.
[37] C. Lim, C.Y. Wang, “Development of high-power electrodes for a liquid-feed direct methanol fuel cell,” J. Power Sources, Vol. 113, pp. 145-150, 2003.
[38] C.Y. Wen, Y.S. Lin, C.H. Lu, “Experimental study of clamping effects on the performances of a single proton exchange membrane fuel cell and a 10-cell stack,” J. Power Sources, Vol. 192, pp. 475-485, 2009.
[39] S. Asghari, M.H. Shahsamandi, M.R.A. Khorasani, “Design and manufacturing of end plates of a 5 kW PEM fuel cell,” Int. J. Hydrogen Energy, Vol. 35, pp. 9291-9297, 2010.
[40] E. Alizadeh, M.M. Barzegari, M. Momenifar, M. Ghadimi, S.H.M. Saadat, “Investigation of contact pressure distribution over the active area of PEM fuel cell stack,” Int. J. Hydrogen Energy, Vol. 41, pp. 3062-3071, 2016.
[41] X. Liu, H. Guo, F. Ye, C.F. Ma, “Water flooding and pressure drop characteristics in flow channels of proton exchange membrane fuel cells,” Electrochim. Acta, Vol. 52, pp. 3607-3614, 2007.
[42] K. Jiao, J. Park, X. Li, “Experimental investigations on liquid water removal from the gas diffusion layer by reactant flow in a PEM fuel cell,” Appl. Energy, Vol. 87, pp. 2770-2777, 2010.
[43] V.A. Paganin, C.L.F. Oliveira, E.A. Ticianelli, T.E. Springer, E.R. Gonzalez, “Modelisticinterpretation of the impedance response of a polymer electrolyte fuel cell1,” Electrochim. Acta, Vol. 43, pp. 3761-3766, 1998.
[44] M. Eikerling, A.A. Kornyshev, “Electrochemical impedance of the cathode catalyst layer in polymer electrolyte fuel cells,” J. Electroanal. Chem., Vol. 475, pp. 107-123, 1999.
[45] T.J.P. Freire, E.R. Gonzalez, “Effect of membrane characteristics and humidification conditions on the impedance response of polymer electrolyte fuel cells,” J. Electroanal. Chem, Vol. 503, pp. 57-68, 2001.
[46] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part I:Stack impedance,” J. Power Sources, Vol. 161, pp. 908-928, 2006.
[47] X. Yuan, J.C. Sun, M. Blanco, H. Wang, J. Zhang, D.P. Wilkinson, “AC impedance diagnosis of a 500W PEM fuel cell stack Part II:Individual cell impedance,” J. Power Sources, Vol. 161, pp. 929-937, 2006.
[48] X. Yan, M. Hou, L. Sun, D. Liang, Q. Shen, H. Xu, P. Ming, B. Yi, “AC impedance characteristics of a 2kW PEM fuel cell stack under different operating conditions and load changes,” Int. J. Hydrogen Energy, Vol. 32, pp. 4358-4364, 2007.
[49] R. Chen, Y. Qin, Q. Du, J Peng, “Effects of Clamping Force on the Operating Behavior of PEM Fuel Cell,” SAE International by University of British Columbia, Monday, September 24, 2018.
[50] https://www.fujifilm.com/products/prescale/
[51] https://www.researchgate.net/figure/Nyquist-plot-of-PEMFC-17_fig3_327732491
[52] https://www.metrohm-autolab.com/Products/Echem/NSeriesFolder/PGSTAT302N
[53] http://www.chroma.com.tw/product/63600_series_Programmable_DC_Electronic_Load.htm
[54] https://technews.tw/2019/04/03/gogoro-new-battery-in-summer-2019/
[55] Y. Devrim H. Devrim, I. Eroglu, “Development of 500 W PEM fuel cell stack for portable power generators ,” Int. J. Hydrogen Energy, 40, pp. 7707-7719, 2015.
[56] 翁莉芳,均勻流場受力優化矩形質子交換膜燃料電池,國立中央大學機械工程研究所碩士論文,民國一百零八年。
指導教授 曾重仁 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明