博碩士論文 106327607 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.15.137.94
姓名 伊凡雅(Iffandya Popy Wulandari)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 基於內阻評估模型的鋰離子電池模組老化預測研究
(Internal Resistance Based Assessment Model for Predicting the Degradation of Li-ion Battery Packs)
相關論文
★ TFT-LCD前框卡勾設計之衝擊模擬分析與驗證研究★ TFT-LCD 導光板衝擊模擬分析及驗證研究
★ 數位機上盒掉落模擬分析及驗證研究★ 旋轉機械狀態監測-以傳動系統測試平台為例
★ 發射室空腔模態分析在噪音控制之應用暨結構聲輻射效能探討★ 時頻分析於機械動態訊號之應用
★ VKF階次追蹤之探討與應用★ 火箭發射多通道主動噪音控制暨三種線上鑑別方式
★ TFT-LCD衝擊模擬分析及驗證研究★ TFT-LCD掉落模擬分析及驗證研究
★ TFT-LCD螢幕掉落破壞分析驗證與包裝系統設計★ 主動式火箭發射噪音控制使用可變因子演算法
★ 醫學/動態訊號處理於ECG之應用★ 光碟機之動態研究與適應性尋軌誤差改善
★ 具新型菲涅爾透鏡之超音波微噴墨器分析與設計★ 醫用近紅外光光電量測系統之設計與驗証
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 身為先進的儲能系統,鋰離子電池組存在著老化壽命方面的複雜性問題。其中,內部電阻(Internal Resistance, IR)對鋰離子電池組的特性產生莫大影響。 IR是鋰離子電池組的一個重要參數,它與能量效率、功率性能、物理壽命以及鋰離子電池組的老化有關。為了獲得IR,本論文使用混合脈衝功率特性測試(Hybrid Pulse Power Characterization)在不同的充電狀態(State of Charge,SOC)和循環下從電池管理系統(Battery Management System)獲得數據。
本論文提出了一種使用帶有徑向基底函數(Radial Basis Function)內核的支援向量迴歸(Support Vector Regression, SVR)來預測鋰離子電池組退化的方法,以及一種使用1至500循環週期之間IR 和 20-90% SOC的關係進行建模的方法。在此,使用資料驅動(data-driven)方法來實現電池壽命預測,該方法透過使用監督式機器學習(SVR)於每個循環週期的IR來實現。實驗結果表明,直到增加到500個循環週期時IR才發生非線性增長約0.24%。透過對量測到的數據進行分析,發現IR在循環老化過程中呈非線性增長,並下降到80%放電深度(Depth-of-Discharge)。電池電量在第500循環週期預測值為8746 mAh。此外,使用SVR算法,透過R2係數評估擬合質量,得分為0.96,在電池組建模中,RMSE的值為0.55x10-2。
摘要(英) Li-ion battery packs as one of the pioneer energy storage systems have complexity issues about degradation life. It gives some impact on the characterization of Li-ion battery pack, especially internal resistance (IR). The IR is an essential parameter of Li-ion battery packs. It relates to energy efficiency, power performance, physical life, and degradation of Li-ion battery pack. To obtain the values of IR, an IR evaluation test was applied to obtain the data from a battery management system (BMS) using Hybrid Pulse Power Characterization test in a different state of charge (SOC) and cycles.
We propose an approach to predict the degradation of Li-ion battery pack using support vector regression (SVR) with Radial Basis Function (RBF) kernel and modeling approach using the relationship between IR, different SOC levels 20%-90%, and cycle in the beginning of life 1 cycle until cycle 500. The data-driven method is used here to achieve battery life prediction.based on IR behavior in every cycle using supervised machine learning, SVR. Our experiment result shows that the IR increasing non-linear approximately 0.24%, and it happened if the cycle increased until 500 cycles. By analyzing the data collected from measurement, it was found out that the IR is increasing non-linearly during cycle aging and degraded to 80% Depth-of-Discharge (DOD). The battery capacity in cycle 500 prediction capacity is 8746 mAh.
Besides, using SVR algorithm the quality of the fitting was evaluated using coefficient determination R2, and the score is 0.96. In the proposed modeling process of the battery pack, the value of RMSE is 0.55x10-2.
關鍵字(中) ★ 內阻
★ 混合脈衝功率特性測試
★ 鋰離子電池組
★ 資料驅動
★ 支援向量迴歸
關鍵字(英) ★ IR
★ HPPC test
★ Li-ion battery pack
★ Data Driven Method
★ Support Vector Regression
論文目次 摘要 ............................................................................................................................................. i
Abstract ....................................................................................................................................... ii
Acknowledgements ................................................................................................................... iii
Contents ..................................................................................................................................... iv
List of Figures ............................................................................................................................ vi
List of Table ............................................................................................................................ viii Introduction
................................................................................................................ 1
1-1 Background and Motivation ................................................................................................ 1
1-2 Literature Survey ................................................................................................................. 2
1-2-1 Battery Life Prediction Method ................................................................................. 2
1-2-2 Performance Characterization of Li-ion Battery Pack ............................................... 2
1-3 The framework of the Thesis ............................................................................................... 5 Theoretical Basis
........................................................................................................ 7
2-1 The Basic Theory of Li-ion Battery .................................................................................... 7
2-2 Internal Resistance of Li-ion Battery Pack .......................................................................... 8
2-3 Support Vector Regression ................................................................................................ 10 Battery Experiment .................................................................................................. 15
3-1 Introduction of Li-ion Battery Pack .................................................................................. 15
3-2 Introduction of the Battery Management System .............................................................. 15
3-3 Testing Equipments ........................................................................................................... 17
3-3-1 Li-ion Battery Pack Specification ............................................................................ 17
3-3-2 Experiment Equipment ............................................................................................ 18
3-4 Experimental Design ......................................................................................................... 19
3-5 Experimental Method ........................................................................................................ 20
3-5-1 Hybrid Pulse Power Characterization (HPPC) Test ................................................ 20
3-5-2 Linkview of Programmable DC Power Supply and Electric Loader ....................... 22
v
Battery Modeling ..................................................................................................... 25
4-1 IR Degradation Prediction Model ..................................................................................... 25
4-2 Generate Dataset ................................................................................................................ 25
4-2-1 Discharge and Charge Test ...................................................................................... 26
4-3 Data Normalization ........................................................................................................... 26
4-4 Cross-Validation ................................................................................................................ 27
4-5 Develop Support Vector Regression ................................................................................. 28
4-6 Train Data of Support Vector Regression ......................................................................... 28
4-7 Performance of the Support Vector Regression ................................................................ 28 Results and Discussion ............................................................................................ 30
5-1 Battery Experiment ............................................................................................................ 30
5-1-1 Charge and Discharge .............................................................................................. 30
5-1-2 Hybrid Pulse Power Characterization ...................................................................... 32
5-2 Li-ion Battery Prediction Model ....................................................................................... 38 Conclusion and Future Work ................................................................................... 45
References ................................................................................................................................ 46
參考文獻 [1] C. L. I. Batteries, "Battery University," Saatavilla (viitattu 13.4. 2016): http://www. batteryuniversity. com/_img/content/new. jpg, 2011.
[2] J. H. Kim, S. J. Lee, J. M. Lee, and B. H. Cho, "A new direct current internal resistance and state of charge relationship for the Li-ion battery pulse power estimation," in 2007 7th Internatonal Conference on Power Electronics, 2007: IEEE, pp. 1173-1178.
[3] H. Huang, N. Cui, Y. Shang, and C. Zhang, "Aging performances and cycle-life predictions of Li-ion battery," in 2016 35th Chinese Control Conference (CCC), 2016: IEEE, pp. 8710-8715.
[4] T. Q. Duong, "USABC and PNGV test procedures," Journal of power sources, vol. 89, no. 2, pp. 244-248, 2000.
[5] X. Xu, C. Yu, S. Tang, X. Sun, X. Si, and L. Wu, "State-of-health estimation for lithium-ion batteries based on Wiener process with modeling the relaxation effect," IEEE Access, vol. 7, pp. 105186-105201, 2019.
[6] G.-w. You, S. Park, and D. Oh, "Real-time state-of-health estimation for electric vehicle batteries: A data-driven approach," Applied Energy, vol. 176, pp. 92-103, 2016.
[7] Y. Li, Berecibar. Changfu, Nanini-Maury. Maitane, Elise Chan, van den Bossche. Jonathan C-W, Van Mierlo. Peter, Omar. Joeri, Noshin, "Random forest regression for online capacity estimation of lithium-ion batteries," Applied energy, vol. 232, pp. 197-210, 2018.
[8] R. R. Richardson, C. R. Birkl, M. A. Osborne, and D. A. Howey, "Gaussian process regression for in situ capacity estimation of lithium-ion batteries," IEEE Transactions on Industrial Informatics, vol. 15, no. 1, pp. 127-138, 2018.
[9] A. Eddahech, O. Briat, N. Bertrand, J.-Y. Deletage, and J.-M. Vinassa, "Behavior and state-of-health monitoring of Li-ion batteries using impedance spectroscopy and recurrent neural networks," International Journal of Electrical Power & Energy Systems, vol. 42, no. 1, pp. 487-494, 2012.
[10] M. Zhu, W. Hu, and N. C. Kar, "The SOH estimation of LiFePO4 battery based on internal resistance with Grey Markov Chain," in 2016 IEEE Transportation Electrification Conference and Expo (ITEC), 2016: IEEE, pp. 1-6.
[11] V. Klass, M. Behm, and G. Lindbergh, "A support vector machine-based state-of-health estimation method for lithium-ion batteries under electric vehicle operation," Journal of Power Sources, vol. 270, pp. 262-272, 2014.
[12] S. Tang, C. Yu, X. Wang, X. Guo, and X. Si, "Remaining useful life prediction of lithium-ion batteries based on the wiener process with measurement error," Energies, vol. 7, no. 2, pp. 520-547, 2014.
[13] X.-S. Si, "An adaptive prognostic approach via nonlinear degradation modeling: Application to battery data," IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5082-5096, 2015.
[14] J. Yu, "Health degradation detection and monitoring of lithium-ion battery based on adaptive learning method," IEEE Transactions on Instrumentation and Measurement, vol. 63, no. 7, pp. 1709-1721, 2013.
[15] X. Tan, Yuqing. Tan, Di. Zhan,Ze. Yu, Yuqian. Fan, Jianzhi. Qiu, Jun. Li , "Real-Time State-of-Health Estimation of Lithium-Ion Batteries Based on the Equivalent Internal Resistance," IEEE Access, vol. 8, pp. 56811-56822, 2020.
[16] L. Lam and P. Bauer, "Practical capacity fading model for Li-ion battery cells in electric vehicles," IEEE transactions on power electronics, vol. 28, no. 12, pp. 5910-5918, 2012.
[17] G. Liu, "A study on remaining useful life prediction for prognostic applications," 2011.
[18] L. Liao and F. Köttig, "Review of hybrid prognostics approaches for remaining useful life prediction of engineered systems, and an application to battery life prediction," IEEE Transactions on Reliability, vol. 63, no. 1, pp. 191-207, 2014.
[19] Y. Liu, G. Zhao, and X. Peng, "A fusion prognostic approach based on multi-kernel relevance vector machine and bayesian model averaging," in 2016 Prognostics and System Health Management Conference (PHM-Chengdu), 2016: IEEE, pp. 1-6.
[20] J. Lee, J.-H. Ahn, and B. K. Lee, "A novel li-ion battery pack modeling considerging single cell information and capacity variation," in 2017 IEEE Energy Conversion Congress and Exposition (ECCE), 2017: IEEE, pp. 5242-5247.
[21] L. Chu, F. Zhou, and J. Guo, "Investigation of cycle life of li-ion power battery pack based on LV-SVM," in 2011 International Conference on Mechatronic Science, Electric Engineering and Computer (MEC), 2011: IEEE, pp. 1602-1605.
[22] M. S. Chitnis, S. P. Pandit, and M. Shaikh, "Electric Vehicle Li-Ion Battery State of Charge Estimation Using Artificial Neural Network," in 2018 International Conference on Inventive Research in Computing Applications (ICIRCA), 2018: IEEE, pp. 992-995.
[23] D.-I. Stroe, M. Swierczynski, and R. Teodorescu, "A comprehensive study on the degradation of lithium-ion batteries during calendar ageing: The internal resistance increase," in 2016 IEEE Energy Conversion Congress and Exposition (ECCE), 2016: IEEE, pp. 1-7.
[24] D.-I. Stroe, M. Swierczynski, S. K. Kær, and R. Teodorescu, "Degradation behavior of lithium-ion batteries during calendar ageing—The case of the internal resistance increase," IEEE Transactions on Industry Applications, vol. 54, no. 1, pp. 517-525, 2017.
[25] Y. Li, Kailong. Liu, Aoife M. Foley, Alana. Zülke, Maitane. Berecibar, Elise. Nanini-Maury, Joeri. Van Mierlo, Harry E. Hoster, "Data-driven health estimation and lifetime prediction of lithium-ion batteries: A review," Renewable and Sustainable Energy Reviews, vol. 113, p. 109254, 2019.
[26] J. P. Christopherson, "Battery test manual for electric vehicles," Idaho National Laboratory, 2015.
[27] H. He, R. Xiong, and J. Fan, "Evaluation of lithium-ion battery equivalent circuit models for state of charge estimation by an experimental approach," energies, vol. 4, no. 4, pp. 582-598, 2011.
[28] U. Westerhoff, K. Kurbach, F. Lienesch, and M. Kurrat, "Analysis of lithium‐ion battery models based on electrochemical impedance spectroscopy," Energy Technology, vol. 4, no. 12, pp. 1620-1630, 2016.
[29] X. Hu, S. Li, and H. Peng, "A comparative study of equivalent circuit models for Li-ion batteries," Journal of Power Sources, vol. 198, pp. 359-367, 2012.
[30] X. Lai, Wenkai. Gao, Yuejiu. Zheng, Minggao. Ouyang, Jianqiu. Li, Xuebing. Han, Long. Zhou, "A comparative study of global optimization methods for parameter identification of different equivalent circuit models for Li-ion batteries," Electrochimica Acta, vol. 295, pp. 1057-1066, 2019.
[31] J. Yang, B. Xia, W. Huang, Y. Fu, and C. Mi, "Online state-of-health estimation for lithium-ion batteries using constant-voltage charging current analysis," Applied energy, vol. 212, pp. 1589-1600, 2018.
[32] R. Xiong, F. Sun, Z. Chen, and H. He, "A data-driven multi-scale extended Kalman filtering based parameter and state estimation approach of lithium-ion polymer battery in electric vehicles," Applied Energy, vol. 113, pp. 463-476, 2014.
[33] Y. Zou, X. Hu, H. Ma, and S. E. Li, "Combined state of charge and state of health estimation over lithium-ion battery cell cycle lifespan for electric vehicles," Journal of Power Sources, vol. 273, pp. 793-803, 2015.
[34] L. Chen, Z. Lü, W. Lin, J. Li, and H. Pan, "A new state-of-health estimation method for lithium-ion batteries through the intrinsic relationship between ohmic internal resistance and capacity," Measurement, vol. 116, pp. 586-595, 2018.
[35] H. Dong, X. Jin, Y. Lou, and C. Wang, "Lithium-ion battery state of health monitoring and remaining useful life prediction based on support vector regression-particle filter," Journal of power sources, vol. 271, pp. 114-123, 2014.
[36] G. Dong, Z. Chen, J. Wei, C. Zhang, and P. Wang, "An online model-based method for state of energy estimation of lithium-ion batteries using dual filters," Journal of Power Sources, vol. 301, pp. 277-286, 2016.
[37] Y. Wang, Z. Chen, and C. Zhang, "On-line remaining energy prediction: A case study in embedded battery management system," Applied Energy, vol. 194, pp. 688-695, 2017.
[38] X. Zhang, Y. Wang, C. Liu, and Z. Chen, "A novel approach of battery pack state of health estimation using artificial intelligence optimization algorithm," Journal of Power sources, vol. 376, pp. 191-199, 2018.
[39] P. Shen, M. Ouyang, L. Lu, J. Li, and X. Feng, "The co-estimation of state of charge, state of health, and state of function for lithium-ion batteries in electric vehicles," IEEE Transactions on vehicular technology, vol. 67, no. 1, pp. 92-103, 2017.
[40] M. Gholizadeh and F. R. Salmasi, "Estimation of state of charge, unknown nonlinearities, and state of health of a lithium-ion battery based on a comprehensive unobservable model," IEEE Transactions on Industrial Electronics, vol. 61, no. 3, pp. 1335-1344, 2013.
[41] C. Zou, A. Klintberg, Z. Wei, B. Fridholm, T. Wik, and B. Egardt, "Power capability prediction for lithium-ion batteries using economic nonlinear model predictive control," Journal of Power Sources, vol. 396, pp. 580-589, 2018.
[42] D. Ansean, M. Gonzalez, J. C. Viera, V. M. Garcia, J. C. Alvarez, and C. Blanco, "Electric vehicle Li-Ion battery evaluation based on internal resistance analysis," in 2014 IEEE Vehicle Power and Propulsion Conference (VPPC), 2014: IEEE, pp. 1-6.
[43] J. Wang and C. Men, "Modeling and application of support vector machine," ed: Science Press, Beijing, 276pp, 2013.
[44] A. J. Smola and B. Schölkopf, "A tutorial on support vector regression," Statistics and computing, vol. 14, no. 3, pp. 199-222, 2004.
[45] P. L. Braga, A. L. Oliveira, and S. R. Meira, "A GA-based feature selection and parameters optimization for support vector regression applied to software effort estimation," in Proceedings of the 2008 ACM symposium on Applied computing, 2008, pp. 1788-1792.
[46] T. Meyer, "Root Mean Square Error Compared to, and Contrasted with, Standard Deviation," Surveying & Land Information Science, vol. 72, no. 3, 2012.
指導教授 潘敏俊(Min-Chun Pan) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明