博碩士論文 107323056 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:3.145.9.200
姓名 陳重佑(Chong-You Chen)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 熱驅動液滴於雙液體介質介面之運動行為分析
(Analysis of the movement of thermal-actuated droplets at the interface of two liquid layers)
相關論文
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 石英柱狀微結構濕蝕刻製程之研究
★ 利用暫態熱微影技術製備高分子微結構★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用電子束微影製作高密度石英柱狀結構★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
★ 石英微結構對表面接觸角與潤濕性影響之研究★ 石英奈米針狀結構表面之潤濕性及遲滯性研究
★ 利用示差掃描熱量分析與雷射閃光熱擴散法 研究牛血清蛋白之熱變性★ MOCVD噴淋式腔體沉積模擬與進氣系統分析
★ The Deposition and Microstructure of Tungsten Oxide Films by Physical Vapor Deposition★ 利用聲子波茲曼方程式分析非對稱多孔矽之熱傳性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-10以後開放)
摘要(中) 近年來微機電的發展帶動微流體操控的興起,其應用以生物、化
學試驗為主,常見微流體操控有化學驅動、靜電力、熱毛細、電濕潤
等,而熱毛細驅動具有低汙染、設備簡單、控制容易等優點,傳統熱
毛細力驅動主要以固體平台為主,利用液珠兩側因溫度差而相異的表
面張力,造成接觸角改變形成位移。,此種平台不可避免的會有溫度
梯度要求過高以及液體殘留等缺點。
本文選用與水不相溶之油體做為操控平台,主要是找尋與傳統熱
毛細力驅動截然不同的控制方式,新型液體平台則是使用馬蘭哥尼效
應所產生液體表面高低改變,間接驅動上方目標液體移動。實驗平台
選定矽油與氟化油兩種流體所組成的三種介面為主軸進行探討,在矽
油平台上滴入液滴,發現液滴因介面張力作用而漂浮於矽油表面之上,
而矽油平台冷熱端的溫度梯度使得液面傾斜驅動液珠向熱端遷移,此
速度高於相同溫度梯度的固體熱毛細驅動平台。而使用氟化油與矽油
所組成的雙層流體平台,可以讓液滴更加穩地的停留於平台介面,此
種方式依然可以利用介面傾斜來驅動液珠,但由於受到流場阻力的阻
礙,移動速度相較緩慢,最後使用史托克阻力定律估算流場產生阻力,
計算出淨力總和。最後利用流體平台的傾斜與流場特性,發現可以在
同一平台上實現讓兩種不同顆粒大小液珠進行相反方向的運動。
摘要(英) In recent years, the growth of microfluidic manipulation has improved
with the rapid development of microelectromechanics, and its practices are
mainly applied to biological and chemical experiments. Common
microfluidic manipulations include chemical drive, electrostatic force,
thermocapillary, and electrowetting. In particular, thermocapillary drive has
several advantages such as low pollution, simple operation, and easy to
control. The traditional thermocapillary force is driven mainly based on a
solid platform, which uses the different surface tension on both sides of the
liquid drop due to the temperature difference, causing the contact angle to
change to form a displacement. Nevertheless, the design of this platform
inevitably have disadvantages such as high temperature gradient and liquid
residue.
In this article, the oil that is incompatible with water is used as the
control platform. The main purpose is to find a control method that is
completely different from the traditional thermocapillary force drive. The
new liquid platform uses the Marangoni effect to produce the liquid surface
level change to indirectly make the top liquid target move. The experimental
platform selects three interfaces which are composed of two fluids of
silicone oil and fluorinated oil as the main axis for discussion. Then
Droplets are dropped on the silicone oil platform, and it is found that the
droplets float on the surface of the silicone oil due to the interface tension.
The temperature gradient makes the liquid surface tilt to drive the liquid
iv
beads to migrate to the hot end, which is higher than the solid
thermocapillary drive platform with the same temperature gradient. The use
of a two-layer fluid platform composed of fluorinated oil and silicone oil
can make the droplets stay on the platform interface more stably. This
method can still use the tilt of the interface to drive the droplets, but due to
the resistance of the flow field, The moving speed is relatively slow, and
finally the resistance produced by the flow field is estimated using Stoke′s
law of resistance, and the total net force is calculated. Finally, using the tilt
and flow field characteristics of the fluid platform, it is found that two liquid
beads of different particle sizes can be moved in opposite directions on the
same platform.
關鍵字(中) ★ 熱毛細力
★ 液滴
★ 微流體
關鍵字(英) ★ Thermocapillary
★ droplets
★ microfluidic
論文目次 目錄
致謝.............................................................................................................i
摘要............................................................................................................ii
Abstract .....................................................................................................iii
目錄............................................................................................................ v
圖目錄.....................................................................................................viii
表目錄......................................................................................................xii
一、緒論.................................................................................................... 1
1-1 研究背景..................................................................................... 1
1-2 文獻回顧..................................................................................... 2
1-2-1 利用化學方式驅動液珠.................................................. 3
1-2-2 特殊的液滴系統.............................................................. 4
1-2-3 以磁力驅動液珠.............................................................. 5
1-2-4 使用熱毛細力操控液滴.................................................. 6
1-3 研究動機與目的 ........................................................................ 9
1-4 論文架構................................................................................... 10
二、理論基礎.......................................................................................... 11
2-1 熱毛細現象所造成液面高低差 .............................................. 11
2-2 熱對流....................................................................................... 13
2-3 流場中的拖曳力 ...................................................................... 15
三、研究方法.......................................................................................... 17
3-1 研究架構................................................................................... 17
3-2 實驗方法................................................................................... 19
3-2-3 實驗規劃....................................................................... 22
vi
3-3 量測方法................................................................................... 27
3-3-1 溫度量測方法............................................................... 27
3-3-2 液面高度量測方法....................................................... 29
3-3-3 PIV 量測方法................................................................. 29
3-3-4 液珠移動量測方法........................................................ 33
四、結果與討論...................................................................................... 36
4-1 液珠在矽油移動分析 ............................................................... 36
4-1-1 矽油加熱之液面變化................................................... 36
4-1-2 矽油液體流場觀測....................................................... 37
4-1-3 矽油介面與不同溫度梯度之液珠移動情形............... 41
4-1-4 液珠運動機制分析....................................................... 44
4-2 液珠在氟化油平台移動分析 .................................................. 48
4-2-1 氟化油加熱之液面變化................................................ 48
4-2-2 氟化油液體流場觀測................................................... 49
4-2-3 氟化油與不同溫度梯度之液珠移動情形................... 50
4-3 液滴在雙流體介面之移動分析 ............................................... 53
4-3-1 雙層流體界面高度量測................................................ 53
4-3-2 雙層流體表面與介面流速........................................... 54
4-3-3 液滴在雙層流體之移動結果....................................... 59
4-3-4 液滴在雙層流體之移動行為分析............................... 65
4-3-5 液珠在雙層流體之移動合力分析............................... 75
4-4 液珠於雙層流體來回運動 ....................................................... 75
4-5 液珠於兩種介面之運動 ........................................................... 77
五、結論與未來展望.............................................................................. 79
vii
6 參考文獻........................................................................................... 82
參考文獻 [1] M. G. Pollack, A. D. Shenderov, and R. B. Fair, "Electrowetting-based
actuation of droplets for integrated microfluidics," Lab on a Chip, vol. 2,
no. 2, pp. 96-101, 2002.
[2] L. Trefethen, "Surface tension in fluid mechanics," Lubricating oil, vol.
25, pp. 35-38, 1969.
[3] J. Cejkova, M. Novak, F. Stepanek, and M. M. Hanczyc, "Dynamics of
chemotactic droplets in salt concentration gradients," Langmuir, vol. 30,
no. 40, pp. 11937-11944, 2014.
[4] J. Čejková, S. Holler, T. Q. Nguyenová, C. Kerrigan, F. Štěpánek, and M.
M. Hanczyc, "Chemotaxis and chemokinesis of living and non-living
objects," in Advances in unconventional computing: Springer, pp. 245-
260, 2017.
[5] N. J. Cira, A. Benusiglio, and M. Prakash, "Vapour-mediated sensing and
motility in two-component droplets," Nature, vol. 519, no. 7544, pp. 446-
450, 2015.
[6] E. Bormashenko, "Liquid marbles, elastic nonstick droplets: From
minireactors to self-propulsion," Langmuir, vol. 33, no. 3, pp. 663-669,
2017.
[7] C. Yang and G. Li, "A novel magnet-actuated droplet manipulation
platform using a floating ferrofluid film," Scientific reports, vol. 7, no. 1,
pp. 1-9, 2017.
[8] M. L. Ford and A. Nadim, "Thermocapillary migration of an attached
drop on a solid surface," Physics of Fluids, vol. 6, no. 9, pp. 3183-3185,
1994.
[9] Q. Dai, W. Huang, and X. Wang, "Surface roughness and orientation
effects on the thermo-capillary migration of a droplet of paraffin oil,"
Experimental thermal and fluid science, vol. 57, pp. 200-206, 2014.
[10] Q. Dai, W. Huang, and X. Wang, "Micro-grooves design to modify the
thermo-capillary migration of paraffin oil," Meccanica, vol. 52, no. 1-2,
pp. 171-181, 2017.
[11] Q. Dai, M. Khonsari, C. Shen, W. Huang, and X. Wang, "On the
migration of a droplet on an incline," Journal of colloid and interface
science, vol. 494, pp. 8-14, 2017.
83
[12] T. Yakhsh, "Thermally-induced Motion Of Droplets On A Thin Liquid
Layer And Its Application To Droplet Manipulation Platforms," 2010.
[13] A. Davanlou and R. Kumar, "Counter-current motion of a droplet
levitated on a liquid film undergoing Marangoni convection,"
International Journal of Heat and Mass Transfer, vol. 89, pp. 345-352,
2015.
[14] Y. Li, R. Grigoriev, and M. Yoda, "Experimental study of the effect of
noncondensables on buoyancy-thermocapillary convection in a volatile
low-viscosity silicone oil," Physics of Fluids, vol. 26, no. 12, p. 122112,
2014.
[15] C. L. Chan and C. Chen, "Effect of gravity on the stability of
thermocapillary convection in a horizontal fluid layer," Journal of Fluid
Mechanics, vol. 647, p. 91, 2010.
[16] S. Madruga, C. Pérez–García, and G. Lebon, "Instabilities in two-liquid
layers subject to a horizontal temperature gradient," Theoretical and
Computational Fluid Dynamics, vol. 18, no. 2-4, pp. 277-284, 2004.
[17] M. Shapira and S. Haber, "Low Reynolds number motion of a droplet in
shear flow including wall effects," International journal of multiphase
flow, vol. 16, no. 2, pp. 305-321, 1990.
[18] "Clearco Products PSF‐5cSt Pure Silicone Fluid." [Online]. Available:
http://www.clearcoproducts.com/pdf/low-viscosity/NP-PSF-5cSt.
[19] "岡良企業股份有限公司 MITOFO® Performance Products." [Online].
Available: https://www.molytog.com.tw/fo-4.html.
[20] C.-J. Teng, "利用熱毛細作用與熱對流現象控制水液珠 在矽油表面上
的移動行為分析," National Central University, 2019.
[21] W. Thielicke, "The flapping flight of birds: Analysis and application,"
University of Groningen, 2014.
[22] R. Savino, D. Paterna, and M. Lappa, "Marangoni flotation of liquid
droplets," Journal of Fluid Mechanics, vol. 479, pp. 307-326, 2003.
指導教授 洪銘聰(Ming-Cong Hong) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明