博碩士論文 107323030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:43 、訪客IP:3.149.239.72
姓名 李盈穀(Ying-Ku Lee)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 以微電鍍法製備鋅銅合金微結構
相關論文
★ 銅導線上鍍鎳或錫對遷移性之影響及鍍金之鎳/銅銲墊與Sn-3.5Ag BGA銲料迴銲之金脆研究★ 單軸步進運動陽極在瓦茲鍍浴中進行微電析鎳過程之監測與解析
★ 光電化學蝕刻n-型(100)單晶矽獲得矩陣排列之巨孔洞研究★ 銅箔基板在H2O2/H2SO4溶液中之微蝕行為
★ 助銲劑對迴銲後Sn-3Ag-0.5Cu電化學遷移之影響★ 塗佈奈米銀p型矽(100)在NH4F/H2O2 水溶液中之電化學蝕刻行為
★ 高效能Ni80Fe15Mo5電磁式微致動器之設計與製作★ 銅導線上鍍金或鎳/金對遷移性之影響及鍍金層對Sn-0.7Cu與In-48Sn BGA銲料迴銲後之接點強度影響
★ 含氮、硫雜環有機物對鍋爐鹼洗之腐蝕抑制行為研究★ 銦、錫金屬、合金與其氧化物的陽極拋光行為探討
★ n-型(100)矽單晶巨孔洞之電化學研究★ 鋁在酸性溶液中孔蝕行為研究
★ 微陽極引導電鍍與監測★ 鍍金層對Bi-43Sn與Sn-9Zn BGA銲料迴銲後之接點強度影響及二元銲錫在不同溶液之電解質遷移行為
★ 人體血清白蛋白構形改變之電化學及表面電漿共振分析研究★ 光電化學蝕刻製作n-型(100)矽質微米巨孔 陣列及連續壁結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究以微陽極導引電鍍法製作微結構。電鍍系統採用玻璃E管包覆線徑125 μm之白金絲為陽極,以PVC包覆之0.643 mm線徑銅線為作為陰極,於含硫酸銅、硫酸鋅、檸檬酸鈉與硫酸鈉作為輔助電解質之鍍浴中進行電鍍,期望製作出可生物降解之富含鋅之鋅銅合金微結構。研究目標,首先以掃描電子顯微鏡(Scanning Electron Microscope, SEM)探討鍍原始浴中依下列順序改變參數對微結構表面形貌之影響,1.添加不同濃度硫酸鈉(0.15 M、0.30 M與0.45 M) 2.將鍍浴酸鹼值由4.9改變至6.5 3.添加1000ppm聚乙二醇,以改善微結構表面形貌作為最佳化之目標電鍍條件,發現添加0.15M硫酸鈉、鍍浴酸鹼值調整至6.5與不添加聚乙二醇等參數可獲得最佳之表面形貌。
固定上述條件作為最佳條件,以獲得富鋅之鋅銅合金為目標,先降低鍍浴中硫酸銅濃度後再增加硫酸鋅濃度,透過提高鋅銅比[Zn2+/Cu2+]來探討其對表面形貌(SEM)、化學成分分布(Energy-dispersive X-ray spectroscopy, EDS)之mapping與line scan及對晶體結構(X-ray diffractometer,XRD)之影響,並透過循環伏安法(cyclic voltammetry, CV)分別解析鍍浴中銅離子、鋅離子之還原機制。
結果顯示:添加0.15M之硫酸鈉後進行電鍍,可以增加成核密度以改善微結構表面形貌,但若添加更多(0.30、0.45 M)之硫酸鈉會導致瘤狀物覆蓋面積再次增加。將酸鹼值調整至6.5,可顯著改變螯合物在鍍浴中之分率,當螯合物種類由Cu2CitH4-取代Cu2CitH3-時會導致析鍍時銅還原量大幅減少,而瘤狀物因此減少而改善微結構形貌。聚乙二醇添加則使微結構變細,但微結構表面形貌轉為粗糙。
當鋅銅比[Zn2+/Cu2+]達到50.00及66.67時,微結構之鋅別含量達到81± 2 at. %及85± 1 at. %,且橫截面之EDS line scan及mapping結果顯示其組成內外均勻,經光學顯微鏡(Optical Microscope, OM)觀察其橫截面與縱剖面之型態緻密,裂紋及孔洞較鋅銅比[Zn2+/Cu2+]低時少。晶體結構分析顯示:鍍浴鋅銅比[Zn2+/Cu2+]為6.67及11.11時,其對應結構分別為β CuZn相+ γ Cu5Zn8相二相與γ Cu5Zn8相+ ε CuZn5相二相;而鋅銅比[Zn2+/Cu2+]為33.33、50.00及66.67時,其對應結構皆為ε CuZn5單一相。
以奈米壓痕儀測量機械性質,鋅銅比[Zn2+/Cu2+]為50.00及66.67時所析鍍之微結構硬度可達到為2.91 ± 0.25 GPa及2.86 ± 0.29GPa,楊氏模數為47.21 ± 5. 37 GPa與50.25 ± 2.27 GPa,擁有較佳之機械性質;以電化學分析量測其抗蝕性能,測得腐蝕電流密度分別為0. 178 mA/cm2與2.818 mA/cm2。
摘要(英) In this study, the micro-anode guided electroplating method was used to fabricate the Zn-Cu alloy microstructure. The electroplating system uses glass -tube coated platinum wire with a diameter of 125 μm as the anode, and PVC-coated copper wire with a diameter of 0.643 mm as the cathode, and contains copper sulfate, zinc sulfate, sodium citrate and sodium sulfate as auxiliary electrolytes in bath.It is expected to produce a biodegradable Zinc-rich Zn-Cu alloy microstructure. The research goal is to use Scanning Electron Microscope (SEM) to explore the effect of changing the parameters on the microstructure surface morphology in the original plating bath in the following order: 1. Add different concentrations of sodium sulfate (0.15 M, 0.30 M and 0.45 M ) 2. Change the pH value of the plating bath from 4.9 to 6.5 3. Add 1000ppm polyethylene glycol to improve the microstructure surface morphology as the optimized target. It was found that 0.15M sodium sulfate and plating bath acid and alkali were added and adjust the pH value to 6.5 to obtain the best surface morphology.
Fix the above conditions as the best conditions to obtain Zinc-rich Zn-Cu alloy as the goal, first reduce the concentration of copper sulfate in the plating bath and then increase the concentration of zinc sulfate, by increasing the ratio of zinc to copper [Zn2+/Cu2+] to analysis surface morphology (SEM), chemical composition(Energy-dispersive X-ray spectroscopy, EDS) mapping and line scan and the effect on crystal structure (X-ray diffractometer, XRD) of microstructure.Through cyclic voltammetry (cyclic voltammetry, CV )to analyze the reduction mechanism of Cu2+ and Zn2+ in the plating bath.
The results show that electroplating after adding 0.15 M sodium sulfate can increase the nucleation density to improve the microstructure surface morphology .Adjusting the pH value to 6.5 with ammonia can significantly change the fraction of the chelate compound in the plating bath. When Cu2CitH4- is substituted for Cu2CitH3-, the amount of copper reduction during plating will be greatly reduced. The microstructure morphology is improved. The addition of polyethylene glycol made the microstructure thinner, the surface morphology of the microstructure turned rough.
When the [Zn2+/Cu2+] reaches 50.00 and 66.67, the zinc content of the microstructure reaches 81± 2 at.% and 85± 1 at. %, and the EDS line scan and mapping results of the cross section show uniform distribution of composition.Observed by optical microscope (Optical Microscope, OM), cross-section of structure is dense if [Zn2+/Cu2+] higher than 33.33 .Higher [Zn2+/Cu2+] in bath leads less cracks and holes. Crystal structure analysis shows that when the [Zn2+/Cu2+] is 6.67 and 11.11, the corresponding structures are β CuZn phase + γ Cu5Zn8 phase and γ Cu5Zn8 phase + ε CuZn5 phase. When [Zn2+/Cu2+] is 33.33, 50.00 and 66.67, the corresponding structures are all ε CuZn5 phases.
The mechanical properties were measured with nanoindenter. When the [Zn2+/Cu2+] is 50.00 and 66.67, the hardness of microstructure can reach 2.91 ± 0.25 GPa and 2.86 ± 0.29 GPa, and the Young′s modulus is 47.21 ± 5. 37 GPa and 50.25 ± 2.27 GPa; the corrosion resistance is measured by electrochemical analysis, and the measured corrosion current density is 0.31 mA/cm2 and 0.45 mA/cm2.
關鍵字(中) ★ 微電鍍法
★ 鋅銅合金
關鍵字(英)
論文目次 摘要 ii
Abstract iii
總目錄 vi
圖目錄 ix
表目錄 xiii
一、前言 1
1.1 研究背景 1
1.2 研究動機與目的 2
二、理論基礎及文獻回顧 3
2-1 電鍍原理 3
2-2 合金電鍍 3
2-3 銅鋅合金電鍍 4
2-3-1 檸檬酸根濃度對鋅螯合物之影響 6
2-3-2 pH值對鋅螯合物分率之影響 7
2-3-3 pH值對銅螯合物分率與還原電流之影響 8
2-4 局部電化學沉積 8
2-5 局部電化學沉積之發展 9
2-6 奈米壓痕測試估計材料之硬度與簡化模數 11
第三章、研究方法 14
3-1 研究方法流程 14
3-2 即時影像監控微陽極導引電鍍系統 15
3-3 微陽極與陰極製備 18
3-4 鍍液調配 19
3-5 實驗步驟 20
3-5-1 微結構製備 20
3-5-2 形貌觀察 20
3-5-3 橫截面、縱剖面形貌觀察 20
3-5-4 化學組成分析 20
3-5-5 晶體結構分析 21
3-5-6 奈米壓痕測試 21
3-5-7 陰極極化曲線/循環伏安法量測 21
3-5-8 抗蝕性能量測 22
3-5-9 電場模擬 23
四、結果 24
4-1 由輔助電解質、調整pH值、添加劑找出最佳鍍浴配方 24
4-1-1原始配方添加輔助電解質之表面形貌觀察 25
4-1-2原始鍍浴添加0.15 M Na2SO4並調整pH值至6.5 28
4-1-3 原始鍍浴添調整pH值至6.5 後添加PEG與Na2SO4之影響比較 28
4-1-4 最佳鍍浴參數組之鍍浴成分變化及其表面形貌觀察 29
4-2最佳鍍浴參數組所析鍍微結構之化學組成分析 30
4-3最佳鍍浴參數組所析鍍微柱之化學組成分布-橫截面觀察 32
4-4最佳鍍浴參數組所析鍍微柱之XRD晶體結構分析 34
4-5最佳鍍浴組各配方所析鍍之微結構之平均直徑與析鍍速率之關係 36
4-6最佳鍍浴組各配方析鍍微結構機械性質、析鍍速率與電流密度之關係 37
4-7最佳鍍浴組各配方所製備微結構之橫截面、縱剖面形貌觀察 40
4-8最佳鍍浴組各配方之陰極極化曲線解析 41
4-9最佳鍍浴配方組循環伏安法解析 43
4-10 Comsol 2.0模擬電場對電流效率與表面形貌之影響 46
4-11最佳鍍浴組各配方製備微結構之腐蝕測試 49
4-12 最佳鍍浴組調整酸鹼值鍍對鍍浴D、E製備微結構之影響 51
4-12-1 調整酸鹼值鍍對鍍浴D、E製備微結構表面形貌之影響 52
4-12-2調整酸鹼值鍍對鍍浴D、E製備微結構機械性質之影響 53
4-12-3調整酸鹼值鍍對鍍浴D、E製備微結構化學組成之影響 55
五、討論 57
5-1-1原始配方添加輔助電解質之表面形貌觀察 57
5-1-2原始鍍浴添加0.15 M Na2SO4並調整pH值至6.5 57
5-1-3 原始鍍浴添調整pH值至6.5 後添加PEG與Na2SO4之影響比較 57
5-1-4 最佳鍍浴參數組之鍍浴成分變化及其表面形貌觀察 58
5-2最佳鍍浴參數組所析鍍微結構之化學組成分析 58
5-3最佳鍍浴參數組所析鍍微柱之化學組成分布-橫截面觀察 58
5-4最佳鍍浴參數組所析鍍微柱之XRD晶體結構分析 59
5-5最佳鍍浴組各配方所析鍍之微結構之平均直徑與析鍍速率之關係 59
5-6最佳鍍浴組各配方析鍍微結構機械性質、析鍍速率與電流密度之關係 60
5-7最佳鍍浴組各配方所製備微結構之橫截面、縱剖面形貌觀察 60
5-8最佳鍍浴組各配方之陰極極化曲線解析 61
5-9最佳鍍浴配方組循環伏安法解析 62
5-10 Comsol 2.0模擬電場對電流效率與表面形貌之影響 62
5-11最佳鍍浴組各配方製備微結構之腐蝕測試 63
5-11-1 調整酸鹼值鍍對鍍浴D、E製備微結構表面形貌之影響 64
5-11-2調整酸鹼值鍍對鍍浴D、E製備微結構機械性質之影響 65
5-11-3調整酸鹼值鍍對鍍浴D、E製備微結構化學組成之影響 65
六、結論 65
七、未來展望 67
八、參考文獻 68
參考文獻 [1] Yang, H., Wang, C., Liu, C., Chen, H., Wu, Y., Han, J., ... & Yuan, W. (2017). Evolution of the degradation mechanism of pure zinc stent in the one-year study of rabbit abdominal aorta model. Biomaterials, 145, 92-105.
[2] Kraus, T., Fischerauer, S., Treichler, S., Martinelli, E., Eichler, J., Myrissa, A., ... & Weinberg, A. M. (2018). The influence of biodegradable magnesium implants on the growth plate. Acta biomaterialia, 66, 109-117.
[3] Yu, Y., Lu, H., & Sun, J. (2018). Long-term in vivo evolution of high-purity Mg screw degradation—Local and systemic effects of Mg degradation products. Acta biomaterialia, 71, 215-224.
[4] Hermawan, H. (2018). Updates on the research and development of absorbable metals for biomedical applications. Progress in biomaterials, 7(2), 93-110.
[5] Tong, X., Shi, Z., Xu, L., Lin, J., Zhang, D., Wang, K., ... & Wen, C. (2020). Degradation behavior, cytotoxicity, hemolysis, and antibacterial properties of electro-deposited Zn–Cu metal foams as potential biodegradable bone implants. Acta Biomaterialia, 102, 481-492.
[6] Murakami, M., & Hirano, T. (2008). Intracellular zinc homeostasis and zinc signaling. Cancer science, 99(8), 1515-1522.
[7] Tapiero, H., & Tew, K. D. (2003). Trace elements in human physiology and pathology: zinc and metallothioneins. Biomedicine & Pharmacotherapy, 57(9), 399-411.
[8] Li, H. F., Xie, X. H., Zheng, Y. F., Cong, Y., Zhou, F. Y., Qiu, K. J., ... & Qin, L. (2015). Development of biodegradable Zn-1X binary alloys with nutrient alloying elements Mg, Ca and Sr. Scientific reports, 5, 10719.
[9] Shi, Z. Z., Yu, J., Liu, X. F., Zhang, H. J., Zhang, D. W., Yin, Y. X., & Wang, L. N. ¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬¬. Effects of Ag, Cu or Ca addition on microstructure and comprehensive properties of biodegradable Zn-0.8 Mn alloy. Materials Science and Engineering: C, 99, 969-978.
[10] Zhao, S., Seitz, J. M., Eifler, R., Maier, H. J., Guillory II, R. J., Earley, E. J., ... & Drelich, J. W. (2017). Zn-Li alloy after extrusion and drawing: structural, mechanical characterization, and biodegradation in abdominal aorta of rat. Materials Science and Engineering: C, 76, 301-312.
[11] Tang, Z., Huang, H., Niu, J., Zhang, L., Zhang, H., Pei, J., ... & Yuan, G. (2017). Design and characterizations of novel biodegradable Zn-Cu-Mg alloys for potential biodegradable implants. Materials & Design, 117, 84-94.
[12] Venezuela, J., & Dargusch, M. S. (2019). The influence of alloying and fabrication techniques on the mechanical properties, biodegradability and biocompatibility of zinc: a comprehensive review. Acta biomaterialia.
[13] Trumbo, P., Yates, A. A., Schlicker, S., & Poos, M. (2001). Dietary reference intakes: vitamin A, vitamin K, arsenic, boron, chromium, copper, iodine, iron, manganese, molybdenum, nickel, silicon, vanadium, and zinc. Journal of the Academy of Nutrition and Dietetics, 101(3), 294.
[14] Gérard, C., Bordeleau, L. J., Barralet, J., & Doillon, C. J. (2010). The stimulation of angiogenesis and collagen deposition by copper. Biomaterials, 31(5), 824-831.
[15] Liu, C., Fu, X., Pan, H., Wan, P., Wang, L., Tan, L., ... & Chu, P. K. (2016). Biodegradable Mg-Cu alloys with enhanced osteogenesis, angiogenesis, and long-lasting antibacterial effects. Scientific reports, 6, 27374.
[16] Chouirfa, H., Bouloussa, H., Migonney, V., & Falentin-Daudré, C. (2019). Review of titanium surface modification techniques and coatings for antibacterial applications. Acta biomaterialia, 83, 37-54.
[17] Li, J., Zhai, D., Lv, F., Yu, Q., Ma, H., Yin, J., ... & Wu, C. (2016). Preparation of copper-containing bioactive glass/eggshell membrane nanocomposites for improving angiogenesis, antibacterial activity and wound healing. Acta biomaterialia, 36, 254-266.
[18] Romero-Sánchez, L. B., Marí-Beffa, M., Carrillo, P., Medina, M. Á., & Díaz-Cuenca, A. (2018). Copper-containing mesoporous bioactive glass promotes angiogenesis in an in vivo zebrafish model. Acta biomaterialia, 68, 272-285.
[19] Bari, A., Bloise, N., Fiorilli, S., Novajra, G., Vallet-Regí, M., Bruni, G., ... & Vitale-Brovarone, C. (2017). Copper-containing mesoporous bioactive glass nanoparticles as multifunctional agent for bone regeneration. Acta biomaterialia, 55, 493-504.
[20] Venkataprasanna, K. S., Prakash, J., Vignesh, S., Bharath, G., Venkatesan, M., Banat, F., ... & Venkatasubbu, G. D. (2020). Fabrication of Chitosan/PVA/GO/CuO patch for potential wound healing application. International Journal of Biological Macromolecules, 143, 744-762.
[21] Wentao, W., Tao, Z., Bulei, S., Tongchang, Z., Qicheng, Z., Fan, W., ... & Yi, S. (2019). Functionalization of polyvinyl alcohol composite film wrapped in am-ZnO@CuO@Au nanoparticles for antibacterial application and wound healing. Applied Materials Today, 17, 36-44.
[22] Madden, J. D., & Hunter, I. W. (1996). Three-dimensional microfabrication by localized electrochemical deposition. Journal of microelectromechanical systems, 5(1), 24-32.
[23] Zangari, G. (2015). Electrodeposition of alloys and compounds in the era of microelectronics and energy conversion technology. Coatings, 5(2), 195-218.
[24] Brenner, A. (2013). Electrodeposition of alloys: principles and practice. Elsevier.
[25] Kotsakis, N., Raptopoulou, C. P., Tangoulis, V., Terzis, A., Giapintzakis, J., Jakusch, T., ... & Salifoglou, A. (2003). Correlations of Synthetic, Spectroscopic, Structural, and Speciation Studies in the Biologically Relevant Cobalt (II)− Citrate System: The Tale of the First Aqueous Dinuclear Cobalt (II)− Citrate Complex. Inorganic chemistry, 42(1), 22-31.
[26] Rode, S., Henninot, C., Vallières, C., & Matlosz, M. (2004). Complexation chemistry in copper plating from citrate baths. Journal of the Electrochemical Society, 151(6), C405-C411.
[27] Chassaing, E., Quang, K. V., & Wiart, R. (1986). Kinetics of copper electrodeposition in citrate electrolytes. Journal of Applied Electrochemistry, 16(4), 591-604.
[28] Kazimierczak, H., Szymkiewicz, K., Rogal, Ł., Gileadi, E., & Eliaz, N. (2018). Direct current electrodeposition of Zn-SiC nanocomposite coatings from citrate bath. Journal of The Electrochemical Society, 165(11), D526-D535.
[29] Karahan, İ. H., & Özdemir, R. (2014). Effect of Cu concentration on the formation of Cu1− x Znx shape memory alloy thin films. Applied surface science, 318, 100-104.
[30] Özdemir, R., Karahan, İ. H., & Karabulut, O. (2016). A study on the electrodeposited Cu-Zn alloy thin films. Metallurgical and Materials Transactions A, 47(11), 5609-5617.
[31] Sanz, O., Echave, F. J., Romero-Sarria, F., Odriozola, J. A., & Montes, M. (2013). Advances in structured and microstructured catalytic reactors for hydrogen production. Renewable Hydrogen Technologies: Production, Purification, Storage, Applications and Safety,, 201-224.
[32] Slupska, M., & Ozga, P. (2014). Electrodeposition of Sn-Zn-Cu alloys from citrate solutions. Electrochimica Acta, 141, 149-160.
[33] Özdemir, R., & Karahan, İ. H. (2014). Electrodeposition and properties of Zn, Cu, and Cu1− x Znx thin films. Applied surface science, 318, 314-318.
[34] El-Giar, E. M., & Thomson, D. J. (1997, May). Localized electrochemical plating of interconnectors for microelectronics. In IEEE WESCANEX 97 Communications, Power and Computing. Conference Proceedings (pp. 327-332). IEEE.
[35] Seol, S. K., Yi, J. M., Jin, X., Kim, C. C., Je, J. H., Tsai, W. L., ... & Margaritondo, G. (2004). Coherent microradiology directly observes a critical cathode-anode distance effect in localized electrochemical deposition. electrochemical and solid-state letters, 7(9), C95-C97.
[36] Seol, S. K., Pyun, A. R., Hwu, Y., Margaritondo, G., & Je, J. H. (2005). Localized Electrochemical Deposition of Copper Monitored Using Real‐Time X‐ray Microradiography. Advanced Functional Materials, 15(6), 934-937.
[37] Seol, S. K., Kim, J. T., Je, J. H., Hwu, Y., & Margaritondo, G. (2007). Fabrication of freestanding metallic micro hollow tubes by template-free localized electrochemical deposition. Electrochemical and solid-state letters, 10(5), C44-C46.
[38] Lin, C. S., Lee, C. Y., Yang, J. H., & Huang, Y. S. (2005). Improved copper microcolumn fabricated by localized electrochemical deposition. electrochemical and solid-state letters, 8(9), C125-C129.
[39] Lee, C. Y., Lin, C. S., & Lin, B. R. (2008). Localized electrochemical deposition process improvement by using different anodes and deposition directions. Journal of Micromechanics and Microengineering, 18(10), 105008.
[40] Wang, F., Wang, F., & He, H. (2016). Parametric electrochemical deposition of controllable morphology of copper micro-columns. Journal of The Electrochemical Society, 163(10), E322-E327.
[41] Wang, F., Xiao, H., & He, H. (2016). Effects of applied potential and the initial gap between electrodes on localized electrochemical deposition of micrometer copper columns. Scientific reports, 6, 26270.
[42] Kamaraj, A. B., Shrestha, H., Speck, E., & Sundaram, M. (2017). Experimental study on the porosity of electrochemical nickel deposits. Procedia Manufacturing, 10, 478-485.
[43] Wang, F., Sun, J., Liu, D., Wang, Y., & Zhu, W. (2017). Effect of voltage and gap on micro-nickel-column growth patterns in localized electrochemical deposition. Journal of The Electrochemical Society, 164(6), D297-D301.
[44] Lin, J. C., Jang, S. B., Lee, D. L., Chen, C. C., Yeh, P. C., Chang, T. K., & Yang, J. H. (2005). Fabrication of micrometer Ni columns by continuous and intermittent microanode guided electroplating. Journal of Micromechanics and Microengineering, 15(12), 2405.
[45] Chang, T. K., Lin, J. C., Yang, J. H., Yeh, P. C., Lee, D. L., & Jiang, S. B. (2007). Surface and transverse morphology of micrometer nickel columns fabricated by localized electrochemical deposition. Journal of Micromechanics and Microengineering, 17(11), 2336.
[46] Yang, J. H., Lin, J. C., Chang, T. K., Lai, G. Y., & Jiang, S. B. (2008). Assessing the degree of localization in localized electrochemical deposition of copper. Journal of Micromechanics and Microengineering, 18(5), 055023.
[47] Lin, J. C., Chang, T. K., Yang, J. H., Jeng, J. H., Lee, D. L., & Jiang, S. B. (2008). Fabrication of a micrometer Ni–Cu alloy column coupled with a Cu micro-column for thermal measurement. Journal of Micromechanics and Microengineering, 19(1), 015030.
[48] Yang, J. H., Lin, J. C., Chang, T. K., You, X. B., & Jiang, S. B. (2009). Localized Ni deposition improved by saccharin sodium in the intermittent MAGE process. Journal of Micromechanics and Microengineering, 19(2), 025015.
[49] Lin, J. C., Yang, J. H., Chang, T. K., & Jiang, S. B. (2009). On the structure of micrometer copper features fabricated by intermittent micro-anode guided electroplating. Electrochimica Acta, 54(24), 5703-5708.
[50] Chen, T. C., Hwang, Y. R., Lin, J. C., & Ciou, Y. J. (2010). The Development of a Real-Time Image Guided Micro Electroplating System. Int. J. Electrochem. Sci, 5, 1810-1820.
[51] 張翔,(2018),銅鎳合金微結構之電鍍研究,國立中央大學。
[52] 劉謹綸,(2018),以微電鍍法製備三維銅錫介金屬化合物微結構,國立中央大學。
[53] 張瑞慶,(2006),奈米壓痕技術與應用,中華民國力學學會會訊,第114期。
[54] Bonou, L., Eyraud, M., Denoyel, R., & Massiani, Y. (2002). Influence of additives on Cu electrodeposition mechanisms in acid solution: direct current study supported by non-electrochemical measurements. Electrochimica acta, 47(26), 4139-4148.
[55] Qiao, F., & West, A. C. (2014). The impact of cations on nucleus density during copper electrodeposition. Electrochimica Acta, 150, 8-14.
[56] Ibrahim, M. A., & Bakdash, R. S. (2020). Copper-rich Cu–Zn alloy coatings prepared by electrodeposition from glutamate complex electrolyte: Morphology, structure, microhardness and electrochemical studies. Surfaces and Interfaces, 18, 100404.
指導教授 林景崎(Jing-Chie Lin) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明