博碩士論文 106323028 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:103 、訪客IP:18.191.222.143
姓名 蔡長軒(TSAI,CHANG-HSUAN)  查詢紙本館藏   畢業系所 機械工程學系
論文名稱 高分子微流體晶片快速打樣製造之實踐
(Practice of rapid proofing and manufacturing of polymer microfluidic chips)
相關論文
★ 微流體系統應用於機械力刺激人體膀胱癌細胞之研究★ 多重微流體晶片機械應力刺激細胞培養之研究
★ 藉由熱接合、表面改質與溶劑處理方法 封閉於環狀嵌段共聚物與環烯烴共聚物材料上 微流道之研究★ Development of A Label-Free Imaging Droplet Sorting System with Machine Learning-Support Vector Machine (SVM)
★ 複合式物理力的生物反應器自動化與控制設計★ 外部致動之微流體機電控制平台
★ 以微铣削進行高分子微流體裝置之製程整合★ 奈米矽質譜晶片於質譜檢測之應用研究
★ 矽奈米結構對於質譜離子化效率探討之研究★ 微滾軋製程應用於高分子材料轉印微結構之研究
★ 設計微流體晶片應用於人體胎盤幹細胞的物理/化學誘導分化之研究★ 利用熱壓製造類多孔隙介質之 微流道模型研究
★ 單晶矽材料電化學放電鑽孔及同軸電度之研究★ 微流道中液滴成形及滴落現象之模擬分析
★ 兆聲波輔助化學溶液清潔晶圓表面汙染顆粒研究★ 真空加熱矽奈米結構晶片對於提升質譜檢測靈敏度與離子化機制探討與應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-21以後開放)
摘要(中) 本論文以便攜式手指驅動微型泵與閥,期望達成漸進式與簡易化之微型混合器微流體系統。微型混合器系統中流道設計和驅動力相關聯,除了手指驅動式以外微型混合皆須使用到外加機械、電磁和磁力的條件下控制泵與閥,再加上流道必須受限於固定型態設計才能完成,這會降低便攜性及耗費高成本。
為了使便攜式微型混合器操作容易且製程簡單好上手,並可在短時間內製作出來,本論文套用了智慧製造加工方法的選用概念以及簡易實驗室的理念,在製程上簡易的製造實驗室為無塵室製程提供了許多替代方案,低成本的製造設備,如CNC雕刻機、雷射切割機、3D列印機,使用市售的材料進行加工,並善加利用網路平台上共享資源與設計,相互討論與開發新型微流裝置的材料、工具與建構方法,激發個人創造力和創新。
研究利用智慧製造加工方法的概念將製程標準化,以達到簡易實驗室的理念, 驗證方式從製程的最前端模具開始製作,三種不同材料性質的模具,黃銅、PMMA(聚甲基丙烯酸甲酯)與矽晶圓模具,接著中段微流道製作方法,探討了幾種常用低成本之設備,後則是尾端簡單快速的接合方法,接著透過三種商業與學術合作案例來進行驗證說明,再則我們將上述所提及的簡單製程概念進一步延伸,製作出一種手持便攜式混合裝置,其裝置內包含手指驅動微型泵與閥的集成;本文最後進行了漸進式混合效果之設計與測試。
摘要(英) This thesis proposes to use portable hand-operated microfluidic devices Micropumps and valves, hoping to achieve a progressive and simplified micromixer microfluidic system. Channel design and driving force are related in the micromixer system. In addition to the hand-operated type, micromixer requires the use of applied mechanical, electromagnetic and magnetic forces to control pumps and valves, and the flow channel must be limited to a fixed form design to complete, which will reduce portability and increase cost.
In order to make the portable micromixer easy to operate, simple to use, and can be produced in a short time, this thesis applies the concept of intelligent manufacturing and processing methods and the idea of simple laboratory. In the process, the simple manufacturing laboratory provides many alternatives for the clean room process, low-cost manufacturing equipment, such as CNC engraving machines, laser cutting machines, and 3D printers. Using commercially available materials for processing, sharing resources and design on the network platform, we tried to discuss and develop the materials, tools and construction methods of new microfluidic devices to stimulate personal creativity and innovation.
This research uses the concept of smart manufacturing methods to standardize the process to achieve the concept of a simple laboratory. The verification method starts with the production of the front-end molds of the process, with three different material properties: brass, PMMA (polymethyl methacrylate) and silicon wafer molds. Then it discusses several common low cost equipments in the production of middle microchannel. After that, there is a simple and fast joining method at the end, and then through three commercial and academic cooperation cases to verify and explain it. What’s more, it further extends the above-mentioned simple process concept to produce a handheld portable micromixer device, with the integration of portable microfluidic devices micropumps and valves. Finally, at the end of this thesis, the design and testing of progressive mixing effects are carried out.
關鍵字(中) ★ 高分子材料
★ 微流體
關鍵字(英)
論文目次 目錄
摘要 I
Abstract II
誌謝 IV
目錄 VI
一、前言 1
1-1 微流體系統發展與應用 1
1-2 微流體系統之微型閥 3
1. 電動微閥(Electrokinetic Microvalves) 3
2. 磁力微閥(Magnetism Microvalves) 3
3. 氣動微閥(Pneumatic Microvalves) 4
1-3 微流體控制設備之即時檢測 4
1-3-1 自我操作微流體設備(Self-operated microfluidic devices) 6
1. 毛細管力(Capillary force) 6
2. 真空驅動壓力(Vacuum-driven pressure) 7
1-3-2 手動操作微流控制設備(Hand-operated microfluidic devices) 7
1. 注射器與微量分注器(Syringe pipette) 7
2. 手指驅動(Hand-operated microfluidic devices) 9
1-4 研究動機 14
二、實驗材料設備及方法 15
2-1 實驗材料 15
2-2 實驗設備 16
2-3 實驗方法 17
三、結果與討論 18
3-1 微流體製程聯網概念 18
3-1-1 模具 20
1. 矽晶圓模具 20
2. 金屬模具 21
3. 聚合物模具 22
3-1-2 流道製作 23
1. 熱壓印 23
2. CNC銑削 24
3. 3D列印 25
3-1-3 接合 26
1. 熱熔融接合 26
2. 表面處理接合 26
3. 膠帶接合 26
3-1-4 製程流程驗證 27
案例一. 微流體裝置成型液滴 27
案例二. 熱塑性材料快速接合(PC.PS) 29
案例三. 微流體裝置與生醫科技 30
3-2 手持式微流裝置設計 31
3-2-1 裝置作動原理 33
3-3 微流體系統閥門與泵 34
3-4 手持式混合裝置 37
四、結論與未來展望 41
參考文獻 ReFerences
[1] E. K. Sackmann, A. L. Fulton, and D. J. Beebe, "The present and future role of microfluidics in biomedical research," Nature, vol. 507, pp. 181-189, 2014.
[2] Y. Xia and G. M. Whitesides, "Soft lithography," Annual review of materials science, vol. 28, pp. 153-184, 1998.
[3] X.-M. Zhao, Y. Xia, and G. M. Whitesides, "Soft lithographic methods for nano-fabrication," Journal of Materials Chemistry, vol. 7, pp. 1069-1074, 1997.
[4] G. M. Whitesides, E. Ostuni, S. Takayama, X. Jiang, and D. E. Ingber, "Soft lithography in biology and biochemistry," Annual review of biomedical engineering, vol. 3, pp. 335-373, 2001.
[5] P. Yager, T. Edwards, E. Fu, K. Helton, K. Nelson, M. R. Tam, et al., "Microfluidic diagnostic technologies for global public health," Nature, vol. 442, pp. 412-418, 2006.
[6] P. Yager, G. J. Domingo, and J. Gerdes, "Point-of-care diagnostics for global health," Annual review of biomedical engineering, vol. 10, 2008.
[7] D. I. Walsh III, D. S. Kong, S. K. Murthy, and P. A. Carr, "Enabling microfluidics: from clean rooms to makerspaces," Trends in biotechnology, vol. 35, pp. 383-392, 2017.
[8] A. K. Au, H. Lai, B. R. Utela, and A. Folch, "Microvalves and micropumps for BioMEMS," Micromachines, vol. 2, pp. 179-220, 2011.
[9] K. W. Oh and C. H. Ahn, "A review of microvalves," Journal of micromechanics and microengineering, vol. 16, p. R13, 2006.
[10] J.-Y. Qian, C.-W. Hou, X.-J. Li, and Z.-J. Jin, "Actuation Mechanism of Microvalves: A Review," Micromachines, vol. 11, p. 172, 2020.
[11] A. Jamshaid, M. Igaki, D. H. Yoon, T. Sekiguchi, and S. Shoji, "Controllable active micro droplets merging device using horizontal pneumatic micro valves," Micromachines, vol. 4, pp. 34-48, 2013.
[12] C. Hu, M. Nakajima, T. Yue, M. Takeuchi, M. Seki, Q. Huang, et al., "On-chip fabrication of magnetic alginate hydrogel microfibers by multilayered pneumatic microvalves," Microfluidics and nanofluidics, vol. 17, pp. 457-468, 2014.
[13] B. Weigl, G. Domingo, P. LaBarre, and J. Gerlach, "Towards non-and minimally instrumented, microfluidics-based diagnostic devices," Lab on a Chip, vol. 8, pp. 1999-2014, 2008.
[14] J. Park, D. H. Han, and J.-K. Park, "Towards practical sample preparation in point-of-care testing: user-friendly microfluidic devices," Lab on a Chip, vol. 20, pp. 1191-1203, 2020.
[15] A. Olanrewaju, M. Beaugrand, M. Yafia, and D. Juncker, "Capillary microfluidics in microchannels: from microfluidic networks to capillaric circuits," Lab on a Chip, vol. 18, pp. 2323-2347, 2018.
[16] P. B. Lillehoj, F. Wei, and C.-M. Ho, "A self-pumping lab-on-a-chip for rapid detection of botulinum toxin," Lab on a Chip, vol. 10, pp. 2265-2270, 2010.
[17] L. Xu, H. Lee, D. Jetta, and K. W. Oh, "Vacuum-driven power-free microfluidics utilizing the gas solubility or permeability of polydimethylsiloxane (PDMS)," Lab on a Chip, vol. 15, pp. 3962-3979, 2015.
[18] Y. Zhai, A. Wang, D. Koh, P. Schneider, and K. W. Oh, "A robust, portable and backflow-free micromixing device based on both capillary-and vacuum-driven flows," Lab on a Chip, vol. 18, pp. 276-284, 2018.
[19] P. Garstecki, M. J. Fuerstman, M. A. Fischbach, S. K. Sia, and G. M. Whitesides, "Mixing with bubbles: a practical technology for use with portable microfluidic devices," Lab on a Chip, vol. 6, pp. 207-212, 2006.
[20] B. Kim, Y. K. Hahn, D. You, S. Oh, and S. Choi, "A smart multi-pipette for hand-held operation of microfluidic devices," Analyst, vol. 141, pp. 5753-5758, 2016.
[21] S. W. Park, J. H. Lee, H. C. Yoon, B. W. Kim, S. J. Sim, H. Chae, et al., "Fabrication and testing of a PDMS multi-stacked hand-operated LOC for use in portable immunosensing systems," Biomedical Microdevices, vol. 10, pp. 859-868, 2008.
[22] W. Li, T. Chen, Z. Chen, P. Fei, Z. Yu, Y. Pang, et al., "Squeeze-chip: a finger-controlled microfluidic flow network device and its application to biochemical assays," Lab on a chip, vol. 12, pp. 1587-1590, 2012.
[23] M. T. Glynn, D. J. Kinahan, and J. Ducrée, "Rapid, low-cost and instrument-free CD4+ cell counting for HIV diagnostics in resource-poor settings," Lab on a Chip, vol. 14, pp. 2844-2851, 2014.
[24] K. Iwai, K. C. Shih, X. Lin, T. A. Brubaker, R. D. Sochol, and L. Lin, "Finger-powered microfluidic systems using multilayer soft lithography and injection molding processes," Lab on a Chip, vol. 14, pp. 3790-3799, 2014.
[25] U. M. Jalal, G. J. Jin, and J. S. Shim, "Paper–plastic hybrid microfluidic device for smartphone-based colorimetric analysis of urine," Analytical chemistry, vol. 89, pp. 13160-13166, 2017.
[26] E. C. Sweet, R. Mehta, Y. Xu, R. Jew, R. Lin, and L. Lin, "Finger-Powered Fluidic Actuation and Mixing via MultiJet 3D Printing," Lab on a Chip, 2020.
指導教授 曹嘉文(Tsao, Chia-Wen) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明