博碩士論文 90322055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.144.118.122
姓名 林明鋒(Ming-Fong Lin)  查詢紙本館藏   畢業系所 土木工程學系
論文名稱 利用電化學方法抑制AAR對鋼筋混凝土材料特性影響之研究
(Investigate the influence of electrochemical technique on the material properties of reinforced conrete)
相關論文
★ 水泥製程於資源再利用之研究★ 焚化底渣水洗前處理及應用之探討
★ 鈦鐵礦氯化爐碴應用於道路基底層及礦尾渣水洗前處理之研究★ 水洗礦尾渣造粒後之粒料特性探討
★ 水洗礦尾渣取代水泥製品中細粒料之可行性研究★ 陶瓷業無機性污泥資源化用於人工細粒料及自充填混凝土之研究
★ 磚製品中摻配鈦砂之較佳配比研究★ 單維電化學傳輸陽離子技術抑制混凝土ASR之研究
★ 不同醇類製備聚丙烯酸酯應用於水泥基材的行為研究★ 人工粒料作為路基材料及CLSM對RC構件和金屬腐蝕之影響研究
★ 經高溫製程產生含矽再生粒料之鹼質活性研究★ 改質人工粒料的應用策略基礎研究
★ 爐碴作為混凝土細粒料的膨脹安定化方法及檢測技術研究★ 鎂鋁氧化物及類水滑石對氯離子吸附行為之研究
★ 以CFB副產石灰作為水淬爐石粉激發劑之可行性探討★ 加速鋰離子傳輸技術中不同電極間距對離子傳輸行為的影響研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究內容主要區分為三個項目:第一、探討鋰離子與水泥水化作用、水化產物及鹼矽膠體反應情形;第二、利用電化學方法抑制混凝土AAR,探討鋼筋通電對鋼筋混凝土抗壓強度、鋼筋握裹力及鋼筋抗拉強度等性質之影響;第三、設計不同通電模式之縮小尺寸RC試體,分析不同電場作用下離子傳輸行為。
研究發現鋰離子會參與水化作用,也會與水化產物及鹼矽膠體反應,甚至取代出鹼矽膠體中部分Na+、K+離子。為了減短維修時間及加速鋰離子進混凝土,利用電化學技術抑制混凝土AAR時,採用較高的電流密度,若以鋼筋作為陰極,施加9 A/m2以上電流密度對水泥砂漿抗壓強度影響較小,但是會造成握裹力下降、增加鋼筋周圍AAR發生機率及鋼筋氫脆現象及等不利的影響,而且電流密度愈大影響愈嚴重;此外,試體內部會有電化學作用「無效區」存在,此時可在試體內部鑽孔作為輔助陽極,增加Li+離子進入及Na+離子移出試體的路徑。實務上建議使用單維電場通電模式,在混凝土兩側外加輔助陰、陽極,對於抑制AAR的效果較佳。
摘要(英) The scope of this research are: (1) study the effects of lithium on hydration of cement, reactions with hydration product, and ASR gel; (2) investigate the influence of electrochemical technique on the properties of rebar and the bond strength between rebar and concrete; (3) study of the migration of Li+, Na+, and Ca2+ ions under electrical fields resulted from different designs of cathode and anode.
Test results showed that lithium ions involve with the hydration of pure cement, react with the hydration product, and even replace the sodium ions of ASR gel. The sufficient amount of lithium ions driving into concrete should be noticed. In order to reduce treatment time and increase the amount of lithium penetration, high current density was adopted. However, a current density higher than 9 A/m2 will induce the hydrogen embrittlement of rebar and reduction of the bond strength between rebar and concrete. If the rebar was used as cathode and an auxiliary anode was applied on the concrete surface, Na+ ion will concentrate near the rebar to increase the possibility of AAR. Improper design of electrodes resulted in ineffective areas to remove Na+ ion out of concrete and migrate Li+ ion into concrete. The better choice is to establish 1-dimensional electrical field by applying auxiliary cathode and anode on each sides of the concrete.
Keywords: AAR, lithium, electrochemical technique
關鍵字(中) ★ 鋰離子
★ 電化學技術
★ AAR
關鍵字(英) ★ AAR
★ lithium
★ electrochemical technique
論文目次 第一章 研究動機內容及目的 1
1.1 研究動機 1
1.2 研究內容 2
1.3 研究目的 2
第二章 文獻回顧 3
2.1 鹼質與粒料反應簡介 3
2.2 鹼質與粒料反應機理 4
2.2.1 有關鹼質與粒料反應機理之學說 6
2.2.2 鹼質與粒料反應種類 8
2.3 鹼質與粒料反應的徵候 10
2.3.1 外觀徵候 10
2.3.2 混凝土構造物內部徵候 13
2.4 影響鹼質與粒料反應因素 15
2.4.1 粒料種類及含量 15
2.4.2 粒料大小 15
2.4.3 水泥成分及水泥細度 16
2.4.4 含鹼量 17
2.4.5 水灰比 17
2.4.6 摻料 18
2.4.7 暴露環境 18
2.5 新拌混凝土預防AAR的方法 19
2.5.1 使用低鹼水泥 19
2.5.2 使用非活性粒料 19
2.5.3 添加卜作嵐材料或其它化學摻料 19
2.5.4 添加鋰化合物 20
2.6 硬固混凝土AAR之維修方式 20
2.7 鋰化合物抑制鹼質與粒料反應機理 21
2.8 鋰化合物運用於抑制AAR發展簡介 21
2.8.1 鋰化合物當成摻料 21
2.8.2 鋰溶液浸泡法或是噴灑法 24
2.8.3 電化學方法 24
2.9 電化學工法簡介 25
2.9.1 陰極防蝕工法 25
2.9.2 電化學去鹽工法 26
2.9.3 電化學還鹼工法 26
2.10 電化學工法對混凝土的影響 26
2.10.1 增加混凝土發生AAR機率 26
2.10.2 混凝土阻抗增加 27
2.10.3 降低混凝土抗壓強度 28
2.10.4 混凝土產生裂縫 28
2.10.5 鋼筋產生氫脆 28
2.10.6 通電對鋼筋握裹力影響 29
2.10.7 造成混凝土溫度升高 30
第三章 試驗規劃 31
3.1 試驗方法 31
3.2試驗流程 31
3.3 試體設計 36
3.3.1 鋰離子在混凝土中之反應研究 36
3.3.2 握裹力試驗 37
3.3.3 鋼筋拉伸試體 42
3.3.4 電場作用下RC試體內鋼筋對離子傳輸影響 45
3.3.5 單維電場作用下之離子傳輸行為探討 47
3.5 試驗材料 50
3.5.1 水泥 50
3.5.2 粒料 51
3.5.3 拌合水 52
3.5.4 藥劑 52
3.5.5 試體配比設計 53
3.5.6 鋼筋及鋼網 54
3.5.7 電解液 55
3.6 試驗器材及設備 56
3.6.1 東河活性粒料的處理 56
3.6.2 試體模具製作 57
3.6.3 通電設備 58
3.6.4 試體內各離子含量分析 62
第四章 結果與討論 63
4.1 LI+離子在混凝土中之反應研究 63
4.1.1 Li+離子對水泥水化過程的影響 65
4.1.2 Li+離子與水泥水化產物間之反應情形 66
4.2 通電對鋼筋握裹力的影響 69
4.2.1 光圓鋼筋 70
4.2.2 竹節鋼筋 72
4.3 通電對鋼筋性質的影響 73
4.3.1 伸長率 75
4.3.2 降伏強度及抗拉強度 77
4.3.3 彈性模數及回彈模數 78
4.4 通電對水泥砂漿抗壓強度的影響 79
4.5 通電對試體外觀影響 82
4.6 通電對水泥漿體的阻抗影響 84
4.6.1 鋼筋拉伸試體的電壓變化 84
4.6.2 電滲法試體的電壓變化 87
4.6.3 鋼筋拉伸試驗試體和電滲法試體電壓比較 89
4.7 單維電場作用下之離子傳輸行為 91
4.7.1 不同含鹼量之陰極電解槽離子濃度 91
4.7.2 不同電流密度之陰極電解槽離子濃度 93
4.7.3 陰極槽之Ca2+濃度分析 94
4.7.4 電滲法試體離子含量 95
4.8 試體內部離子分佈 98
4.8.1 鋼筋拉伸試驗試體之離子分佈 99
4.8.2 縮小尺寸RC試體之離子分佈 101
4.9 綜合討論 105
第五章 結論與建議 106
5.1 結論 106
5.2 建議 107
參考文獻
參考文獻 1. Stanton, T.E., “Influence of cement and aggregate on concrete expansion”, Engineering News-Record, 124, p. 59 (1940).
2. 李釗、饒正、張道光、陳桂清,「花蓮港區混凝土構造物鹼質與粒料反應之調查研究」,台灣省交通處港灣技術研究所 (1980)。
3. 柯正龍,「台中、基隆及蘇澳港港區混凝土構造物鹼質與粒料反應調查研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
4. 陳仁達,「花東地區鹼-粒料反應研究及防治方法」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
5. 王淑慧,「台灣地區岩石之鹼—粒料反應潛能研究」,碩士論文,國立中央大學土木工程研究所,中壢 (1999)。
6. 許書王,「台灣地區鹼質與粒料反應抑制策略之研究」,博士論文,國立中央大學土木工程研究所,中壢 (1999)。
7. 巫柏蕙,「港灣混凝土構造物鹼質與粒料反應檢測方法評估研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2000)。
8. 李釗、許書王,「高雄港區混凝土構造物鹼質與粒料反應調查與潛勢分析研究」,交通部運輸研究所港灣技術研究中心期末報告 (2000)。
9. Monteiro, P.J.M. etc., “Influence of Mineral admixtures on the alkali-aggregate reaction”, Cement and Concrete Research, Vol. 27, No. 12. pp. 1899-1997 (1997).
10. Dent Glasser, L.S. and Kataoka, N., “The chemistry of alkali-aggregate reaction”, Cement and Concrete Research,” Vol. 11, pp. 1-9 (1981).
11. Gillott, J.E., “Alkali-aggregate reaction in concrete”, Engineering Geology, Vol.9, pp. 303-326, (1975).
12. Hobbs, D.W., “Expansion of concrete due to alkali-silica reaction”, The Structural Engineer, Cement, Concrete, and Aggregate, England, (1984).
13. Young, J.F., and Mindess, S., “Concrete”, Prentice, INC. Englewood Cliffs, New Jersey, p. 140-148.
14. Young, J.F., and Mindess, S., “Concrete”, Prentice, INC. Englewood Cliffs, New Jersey, p. 541-542.
15. McCoy, W.J. and A.G. Caldwell. “New approach to inhibiting alkali-aggregate expansion”, Journal of the American Concrete Institute. Vol. 22, pp. 693-706 (1951).
16. SHRP-C-343, “Eliminating or minimizing alkali-silica reactivity”, Strategic Highway Research Program, (1993).
17. Lawrence M. and Vivian H.E. “The reactions of various alkalis with silica”, Australian Journal of Applied Science, Vol. 12, pp. 96-103, (1961).
18. Kishitani, K. et al. “Series of durability in concrete structures, alkali aggregate reaction”, Gihodo Shuppan Co., Ltd, pp. 66-68, (1986).
19. Ong, S. “Study of effects of LiOH, NaOH, and KOH on alkali silica reaction”, M.S.C.E. thesis, School of Civil Engineering, Purdue University, (1990).
20. Stark D.C. “Lithium salt admixtures – an alternative method to prevent expanxive alkali-silica reactivity”, 9th International Conference on Alkali-Aggregate Reaction, London, pp.1017-1025, (1992).
21. Bian Qinghan etc. “Preliminary study of effect of LINO2 on expansion of mortars subjected to alkali-silica reaction”, Cement and Concrete Research, Vol. 25, No. 8, pp. 1647-1654, (1995).
22. Lumley J.S. “ASR suppression by lithium compounds”, Cement and Concrete Research, Vol. 27, No. 2, pp. 235-244, (1997).
23. Diamond S. “Unique response of LiNO3 as an alkali silica reaction-preventive admixture”, Cement and Concrete Research Vol. 29, pp. 1271-1275, (1999).
24. Sakaguchi, Y., Takakura, M., and Kitagawa, A., “The inhibiting effect of lithium compounds on alkali-silica reaction,” Proceeding of the 8th International Conference on Alkali-Aggregate Reaction, Kyoto, pp.229-234 (1989).
25. Stokes D.B. “Development of a lithium-based material for decreasing ASR-induced expansi on in hardened concrete”, 11th International Conference on Alkali-Aggregate Reaction, Quebec, pp.1079-1087, (2000).
26. 劉志堅,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,博士論文,國立中央大學土木工程研究所,中壢,(2003)。
27. 陳登義,「以電化學技術抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,1999年。
28. Whitmore D. and Abbott S. “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures”, 11th International Conference on Alkali-Aggregate Reaction, Quebec, pp.1089-1098, (1992).
29. 陳桂清,「電化學技術應用於鹽害RC結構物之去鹽成效與鋼筋腐蝕行為研究」,博士論文,國立中央大學土木工程研究所,中壢,(1999)。
30. Natesaiyer, K. and Hober, K.C., “Investigation of electrical effects on alkali-aggregate reaction”, Proceeding of the 7th International Conference on Alkali-Aggregate Reaction, Ottawa, Canada. pp. 466-471, (1986).
31. Kuroda, T., Nishibayashi S., and Bian Q., “Study of alkali-aggregate reactions in electrical fields”, Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Astralia, pp.884-891 (1996).
32. Sergi, G. and Page, C.L., “The effects of cathodic protection on alkali-silica reaction in reinforced concrete”, TRRL Contract Report, No. 310, pp. 1-53, (1992).
33. Ali, M.G. and Rasheeduzzafar, “Cathodic protection current accelerates alkali-silica reaction”, ACI Materials Journal May-June issue. Vol. 90, pp 247-252.
34. Torii K. etc. “Influence of cathodic protection on cracking and expansion of the beams due to alkali-silica reaction”, Proceeding of the 10th International Conference on Alkali-Aggregate Reaction, Melbourne, Astralia, pp.653-660 (1996).
35. Page, C.L., “Interfacial effects of electrochemical protection methods applied to steel in chloride-containing concrete,” Rehabilitation of Concrete Structures Proceedings of International Conference, Held by RILEM MELBOURNE, pp. 179-187 (1992).
36. 陳清華,「混凝土結構物植筋補強之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢,(2001)。
37. Jiang-Jhy Chang, Weichung Yeih, and Ran Huang, “Degradation of the bond strength between rebar and concrete due to the impressed cathodic current”, Journal of Marine Science and Technology, Vol. 7, No. 2, pp. 89-93, (1999).
38. Andrade, C., “Calculation of chloride diffusion coefficients in concrete from ionic migration measurements,” Cement and Concrete Research, Vol. 23, pp. 724-742 (1993).
39. Emmanuel, E. et al., “Chloride extraction and realkalization of reinforced concrete stop steel corrosion”, Journal of Performance of Constructed Facilities, Vol. 12, No. 2, pp. 77-84, (1998).
40. 蘇銘鴻,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢 (2002)。
41. Ahmad S., “Combined effects of alkali-aggregate reaction (AAR) and cathodic protection currents in reinforced concrete”, Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.229-238 (2000).
42. CNS 11152 「根據鋼筋混凝土握裹力比較混凝土性能試驗法」。
43. CNS 1010 「水硬性水泥墁料抗壓強度檢驗法(用50 mm或2 in立方體試體)」。
44. ASTM C227-97, “Standard Test Method for Potential Alkali Reactivity of Cement-Aggregate Combinations (Mortar-Bar Method),” Annual Book of ASTM Standards, Section 4, Vol.04.02, 1999.
45. ASTM C1202-97, “Standard Test Method for Electrical Indication of Concrete’s Ability to Resist Chloride Ion Penetration,” USA, 1989.
指導教授 李釗(Chau Lee) 審核日期 2003-7-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明